Several mathematical models and fast algorithms for image processing. (Quelques modèles mathématiques et algorithmes rapides pour le traitement d'images)
暂无分享,去创建一个
[1] Ronald F. Boisvert,et al. NIST Handbook of Mathematical Functions , 2010 .
[2] Robert T. Collins,et al. Multitarget data association with higher-order motion models , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.
[3] B. Mercier,et al. A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .
[4] W J Lentz,et al. Generating bessel functions in mie scattering calculations using continued fractions. , 1976, Applied optics.
[5] Gabriele Moser,et al. An a-contrario approach for unsupervised change detection in radar images , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.
[6] Pierre Weiss,et al. A proximal method for inverse problems in image processing , 2009, 2009 17th European Signal Processing Conference.
[7] Cor J. Veenman,et al. Motion tracking as a constrained optimization problem , 2003, Pattern Recognit..
[8] Maël Primet,et al. Probabilistic methods for point tracking and biological image analysis. (Méthodes probabiliste pour le suivi de points et l'analyse d'images biologiques) , 2011 .
[9] Thomas Brox,et al. iPiano: Inertial Proximal Algorithm for Nonconvex Optimization , 2014, SIAM J. Imaging Sci..
[10] W. Ring. Structural Properties of Solutions to Total Variation Regularization Problems , 2000 .
[11] Mubarak Shah,et al. A non-iterative greedy algorithm for multi-frame point correspondence , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.
[12] Cor J. Veenman,et al. Resolving Motion Correspondence for Densely Moving Points , 2001, IEEE Trans. Pattern Anal. Mach. Intell..
[13] R. Rockafellar. Monotone Operators and the Proximal Point Algorithm , 1976 .
[14] Stanley Osher,et al. Image Denoising and Decomposition with Total Variation Minimization and Oscillatory Functions , 2004, Journal of Mathematical Imaging and Vision.
[15] Hyunjoong Kim,et al. Functional Analysis I , 2017 .
[16] M. Abramowitz,et al. Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .
[17] M. Nikolova. Model distortions in Bayesian MAP reconstruction , 2007 .
[18] ANTONIN CHAMBOLLE,et al. An Algorithm for Total Variation Minimization and Applications , 2004, Journal of Mathematical Imaging and Vision.
[19] Michael Frankfurter,et al. Numerical Recipes In C The Art Of Scientific Computing , 2016 .
[20] B. V. Dean,et al. Studies in Linear and Non-Linear Programming. , 1959 .
[21] Jean-François Aujol,et al. Irregular to Regular Sampling, Denoising, and Deconvolution , 2009, Multiscale Model. Simul..
[22] R. Glowinski,et al. Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .
[23] Yurii Nesterov,et al. Lectures on Convex Optimization , 2018 .
[24] J. Moreau. Proximité et dualité dans un espace hilbertien , 1965 .
[25] Marc Teboulle,et al. Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems , 2009, IEEE Transactions on Image Processing.
[26] Mila Nikolova,et al. Local Strong Homogeneity of a Regularized Estimator , 2000, SIAM J. Appl. Math..
[27] Walter Gautschi,et al. A Computational Procedure for Incomplete Gamma Functions , 1979, TOMS.
[28] A. Chambolle,et al. On the Convergence of the Iterates of the “Fast Iterative Shrinkage/Thresholding Algorithm” , 2015, J. Optim. Theory Appl..
[29] Guy Gilboa,et al. A Spectral Approach to Total Variation , 2013, SSVM.
[30] H. H. Rachford,et al. On the numerical solution of heat conduction problems in two and three space variables , 1956 .
[31] L. Moisan,et al. Maximal meaningful events and applications to image analysis , 2003 .
[32] Bernard Rougé,et al. SMOS images restoration from L1A data: A sparsity-based variational approach , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.
[33] Gwendoline Blanchet,et al. An explicit sharpness index related to global phase coherence , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
[34] Laurent Condat,et al. Discrete Total Variation: New Definition and Minimization , 2017, SIAM J. Imaging Sci..
[35] Tony F. Chan,et al. Total variation blind deconvolution , 1998, IEEE Trans. Image Process..
[36] D. Ruderman. The statistics of natural images , 1994 .
[37] Bernard Rougé,et al. Restoration and Zoom of Irregularly Sampled, Blurred, and Noisy Images by Accurate Total Variation Minimization with Local Constraints , 2006, Multiscale Model. Simul..
[38] Lionel Moisan,et al. No-Reference Image Quality Assessment and Blind Deblurring with Sharpness Metrics Exploiting Fourier Phase Information , 2015, Journal of Mathematical Imaging and Vision.
[39] I. Daubechies,et al. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.
[40] Jacques Froment,et al. Adapted Total Variation for Artifact Free Decompression of JPEG Images , 2005, Journal of Mathematical Imaging and Vision.
[41] Julien Rabin,et al. A Statistical Approach to the Matching of Local Features , 2009, SIAM J. Imaging Sci..
[42] Frank Dellaert,et al. MCMC-based particle filtering for tracking a variable number of interacting targets , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[43] Lionel Moisan,et al. Total variation denoising using posterior expectation , 2008, 2008 16th European Signal Processing Conference.
[44] L. Moisan. How to discretize the Total Variation of an image? , 2007 .
[45] Lionel Moisan,et al. Point tracking: an a-contrario approach , 2012 .
[46] J. Hills. Effect of binary stars on the dynamical evolution of stellar clusters. II. Analytic evolutionary models , 1975 .
[47] Pascal Fua,et al. Ieee Transactions on Pattern Analysis and Machine Intelligence 1 Multiple Object Tracking Using K-shortest Paths Optimization , 2022 .
[48] Y. Bar-Shalom,et al. On hierarchical tracking for the real world , 2006, IEEE Transactions on Aerospace and Electronic Systems.
[49] R. H. Pratt,et al. Rayleigh scattering by neutral atoms, 100 eV to 10 MeV , 1980 .
[50] Jérôme Darbon,et al. Image Restoration with Discrete Constrained Total Variation Part I: Fast and Exact Optimization , 2006, Journal of Mathematical Imaging and Vision.
[51] Mohamed-Jalal Fadili,et al. Total Variation Projection With First Order Schemes , 2011, IEEE Transactions on Image Processing.
[52] Dmitry Chetverikov,et al. Feature Point Tracking for Incomplete Trajectories , 1999, Computing.
[53] A. Chambolle,et al. Geometric properties of solutions to the total variation denoising problem , 2016, 1602.00087.
[54] Stanley Osher,et al. Modeling Textures with Total Variation Minimization and Oscillating Patterns in Image Processing , 2003, J. Sci. Comput..
[55] Lionel Moisan,et al. Accelerated A-contrario detection of smooth trajectories , 2014, 2014 22nd European Signal Processing Conference (EUSIPCO).
[56] Gilles Aubert,et al. Efficient Schemes for Total Variation Minimization Under Constraints in Image Processing , 2009, SIAM J. Sci. Comput..
[57] David G. Luenberger,et al. Linear and nonlinear programming , 1984 .
[58] G. P. Bhattacharjee,et al. The Incomplete Gamma Integral , 1970 .
[59] Daniel Cremers,et al. Anisotropic Huber-L1 Optical Flow , 2009, BMVC.
[60] Patrick Pérez,et al. Video Inpainting of Complex Scenes , 2014, SIAM J. Imaging Sci..
[61] I. Vardavas,et al. Effect of redistribution on the emission peaks from chromospheric-type stellar atmospheres , 1974 .
[62] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[63] Amandine Robin,et al. An A-Contrario Approach for Subpixel Change Detection in Satellite Imagery , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[64] Lionel Moisan,et al. A-contrario Detectability of Spots in Textured Backgrounds , 2009, Journal of Mathematical Imaging and Vision.
[65] M. A. Chaudhry,et al. On a Class of Incomplete Gamma Functions with Applications , 2001 .
[66] Ming-Jun Lai,et al. The Convergence of a Central-Difference Discretization of Rudin-Osher-Fatemi Model for Image Denoising , 2009, SSVM.
[67] Jean-Michel Morel,et al. Level lines based disocclusion , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).
[68] François Malgouyres,et al. Total variation based interpolation , 1998, 9th European Signal Processing Conference (EUSIPCO 1998).
[69] Florence Tupin,et al. Poisson NL means: Unsupervised non local means for Poisson noise , 2010, 2010 IEEE International Conference on Image Processing.
[70] Mingqiang Zhu,et al. An Efficient Primal-Dual Hybrid Gradient Algorithm For Total Variation Image Restoration , 2008 .
[71] W. Ziemer. Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation , 1989 .
[72] Yves Meyer,et al. Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures , 2001 .
[73] Mubarak Shah,et al. Establishing motion correspondence , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.
[74] Dimitri P. Bertsekas,et al. On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..
[75] Pierre Weiss,et al. Algorithmes rapides d'optimisation convexe. Applications à la reconstruction d'images et à la détection de changements. (Fast algorithms for convex optimization. Applications to image reconstruction and change detection) , 2008 .
[76] Antonin Chambolle,et al. An Upwind Finite-Difference Method for Total Variation-Based Image Smoothing , 2011, SIAM J. Imaging Sci..
[77] Patrick L. Combettes,et al. Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.
[78] J. Tukey,et al. An algorithm for the machine calculation of complex Fourier series , 1965 .
[79] C. Lanczos,et al. A Precision Approximation of the Gamma Function , 1964 .
[80] José M. Bioucas-Dias,et al. Restoration of Poissonian Images Using Alternating Direction Optimization , 2010, IEEE Transactions on Image Processing.
[81] Antonin Chambolle,et al. A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.
[82] Andy M. Yip,et al. Simultaneous total variation image inpainting and blind deconvolution , 2005, Int. J. Imaging Syst. Technol..
[83] R. Kannan,et al. Advanced Analysis: On The Real Line , 1996 .
[84] Marc Teboulle,et al. A simple algorithm for a class of nonsmooth convex-concave saddle-point problems , 2015, Oper. Res. Lett..
[85] Massimo Fornasier,et al. Theoretical Foundations and Numerical Methods for Sparse Recovery , 2010, Radon Series on Computational and Applied Mathematics.
[86] Yann Gousseau,et al. Are Natural Images of Bounded Variation? , 2001, SIAM J. Math. Anal..
[87] Antonin Chambolle,et al. Diagonal preconditioning for first order primal-dual algorithms in convex optimization , 2011, 2011 International Conference on Computer Vision.
[88] L. Moisan,et al. Algorithm 1006: Fast and Accurate Evaluation of a Generalized Incomplete Gamma Function , 2016, ACM Trans. Math. Softw..
[89] Antonin Chambolle,et al. Image Decomposition into a Bounded Variation Component and an Oscillating Component , 2005, Journal of Mathematical Imaging and Vision.
[90] Lionel Moisan,et al. Periodic Plus Smooth Image Decomposition , 2011, Journal of Mathematical Imaging and Vision.
[91] Antonin Chambolle,et al. Total Variation Minimization and a Class of Binary MRF Models , 2005, EMMCVPR.
[92] W. J. Thron,et al. Continued Fractions: Analytic Theory and Applications , 1984 .
[93] Steven G. Johnson,et al. The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.
[94] Mariella Dimiccoli,et al. Particle detection and tracking in fluorescence time-lapse imaging: a contrario approach , 2015, Machine Vision and Applications.
[95] R. Tyrrell Rockafellar,et al. Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.
[96] Agnès Desolneux,et al. An Anisotropic A Contrario Framework for the Detection of Convergences in Images , 2016, Journal of Mathematical Imaging and Vision.
[97] Marc Teboulle,et al. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..
[98] Annie A. M. Cuyt,et al. Handbook of Continued Fractions for Special Functions , 2008 .
[99] Jean-Michel Morel,et al. From Gestalt Theory to Image Analysis: A Probabilistic Approach , 2007 .
[100] Yurii Nesterov,et al. Smooth minimization of non-smooth functions , 2005, Math. Program..
[101] Glendon Ralph Pugh. AN ANALYSIS OF THE LANCZOS GAMMA APPROXIMATION , 2004 .
[102] Agnès Desolneux,et al. When the a contrario approach becomes generative , 2015, International Journal of Computer Vision.
[103] Frederick R. Forst,et al. On robust estimation of the location parameter , 1980 .
[104] V. Linetsky. PRICING EQUITY DERIVATIVES SUBJECT TO BANKRUPTCY , 2006 .
[105] Julie Delon,et al. Accurate Junction Detection and Characterization in Natural Images , 2013, International Journal of Computer Vision.
[106] David G. Lowe,et al. Perceptual Organization and Visual Recognition , 2012 .
[107] Rafael Grompone von Gioi,et al. LSD: A Fast Line Segment Detector with a False Detection Control , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[108] B. Mamedov,et al. Evaluation of Incomplete Gamma Functions Using Downward Recursion and Analytical Relations , 2004 .
[109] Bernard Rouge,et al. Nonlinear spectral extrapolation: new results and their application to spatial and medical imaging , 1995, Optics + Photonics.
[110] Max Wertheimer,et al. Untersuchungen zur Lehre von der Gestalt , .
[111] Jean-Michel Morel,et al. A Review of Image Denoising Algorithms, with a New One , 2005, Multiscale Model. Simul..
[112] Tony F. Chan,et al. High-Order Total Variation-Based Image Restoration , 2000, SIAM J. Sci. Comput..
[113] Jean-Christophe Pesquet,et al. A Convex Optimization Approach for Depth Estimation Under Illumination Variation , 2009, IEEE Transactions on Image Processing.
[114] F. Doré. Convergences de structures linéaires dans les images : modélisation stochastique et applications en imagerie médicale , 2014 .
[115] Patrick L. Combettes,et al. Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..
[116] Antonin Chambolle,et al. Total Variation in Imaging , 2015, Handbook of Mathematical Methods in Imaging.
[117] François Malgouyres,et al. Edge Direction Preserving Image Zooming: A Mathematical and Numerical Analysis , 2001, SIAM J. Numer. Anal..
[118] Bruce W. Char,et al. On Stieltjes’ continued fraction for the gamma function , 1980 .
[119] I. Csiszár. Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems , 1991 .
[120] Curtis R. Vogel,et al. Ieee Transactions on Image Processing Fast, Robust Total Variation{based Reconstruction of Noisy, Blurred Images , 2022 .
[121] Lionel Moisan,et al. Total Variation denoising using iterated conditional expectation , 2014, 2014 22nd European Signal Processing Conference (EUSIPCO).
[122] Lionel Moisan,et al. Edge Detection by Helmholtz Principle , 2001, Journal of Mathematical Imaging and Vision.
[123] P. L. Combettes. Iterative construction of the resolvent of a sum of maximal monotone operators , 2009 .
[124] Y. Nesterov. A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .
[125] Serge Winitzki. Computing the Incomplete Gamma Function to Arbitrary Precision , 2003, ICCSA.
[126] Wayne Fullerton,et al. Algorithm 434: modified incomplete gamma function [G 2] , 1972, CACM.
[127] Lionel Moisan,et al. Posterior Expectation of the Total Variation Model: Properties and Experiments , 2013, SIAM J. Imaging Sci..
[128] Leonid P. Yaroslavsky,et al. Signal sinc-interpolation: a fast computer algorithm , 1996 .
[129] Antonin Chambolle,et al. Dual Norms and Image Decomposition Models , 2005, International Journal of Computer Vision.
[130] Pascal Getreuer,et al. Linear Methods for Image Interpolation , 2011, Image Process. Line.
[131] Yaakov Bar-Shalom,et al. Sonar tracking of multiple targets using joint probabilistic data association , 1983 .
[132] Karl Kunisch,et al. Total Generalized Variation , 2010, SIAM J. Imaging Sci..
[133] Alessandro Foi,et al. Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering , 2007, IEEE Transactions on Image Processing.
[134] P. Nicolini,et al. Large extra dimensions and small black holes at the LHC , 2010, 1001.2211.
[135] Bradley J. Lucier,et al. Error Bounds for Finite-Difference Methods for Rudin-Osher-Fatemi Image Smoothing , 2011, SIAM J. Numer. Anal..
[136] Y. Moreno,et al. Epidemic outbreaks in complex heterogeneous networks , 2001, cond-mat/0107267.
[137] J. Delon,et al. Study of the digital camera acquisition process and statistical modeling of the sensor raw data , 2013 .
[138] Jean-François Aujol,et al. Stability of Over-Relaxations for the Forward-Backward Algorithm, Application to FISTA , 2015, SIAM J. Optim..
[139] Tieyong Zeng,et al. Total Variation Restoration of Images Corrupted by Poisson Noise with Iterated Conditional Expectations , 2015, SSVM.
[140] Mohamed-Jalal Fadili,et al. A Generalized Forward-Backward Splitting , 2011, SIAM J. Imaging Sci..
[141] Pascal Fua,et al. Multicamera People Tracking with a Probabilistic Occupancy Map , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[142] Lionel Moisan,et al. An aliasing detection algorithm based on suspicious colocalizations of Fourier coefficients , 2010, 2010 IEEE International Conference on Image Processing.
[143] Aggelos K. Katsaggelos,et al. Total variation super resolution using a variational approach , 2008, 2008 15th IEEE International Conference on Image Processing.
[144] R Bellman,et al. On the Theory of Dynamic Programming. , 1952, Proceedings of the National Academy of Sciences of the United States of America.
[145] Dmitry Chetverikov,et al. Experimental Comparative Evaluation of Feature Point Tracking Algorithms , 1998, Theoretical Foundations of Computer Vision.
[146] P. J. Huber. Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .
[147] Michael Unser,et al. Cardinal spline filters: Stability and convergence to the ideal sinc interpolator , 1992, Signal Process..
[148] Rafael Grompone von Gioi,et al. On Straight Line Segment Detection , 2008, Journal of Mathematical Imaging and Vision.
[149] Cuneyt Akinlar,et al. EDCircles: A real-time circle detector with a false detection control , 2013, Pattern Recognit..