Several mathematical models and fast algorithms for image processing. (Quelques modèles mathématiques et algorithmes rapides pour le traitement d'images)

In this thesis, we focus on several mathematical models dedicated to low-level digital image processing tasks. Mathematics can be used to design innovative models and to provide some rigorous studies of properties of the produced images. However, those models sometimes involve some intensive algorithms with high computational complexity. We take a special care in developing fast algorithms from the considered mathematical models. First, we give a concise description of some fundamental results of convex analysis based on Legendre-Fenchel duality. Those mathematical tools are particularly efficient to perform the minimization of convex and nonsmooth energies, such as those involving the total variation functional which is used in many image processing applications. Then, we focus on a Fourier-based discretization scheme of the total variation, called Shannon total variation, which provides a subpixellic control of the image regularity. In particular, we show that, contrary to the classically used discretization schemes of the total variation based on finite differences, the use of the Shannon total variation yields images that can be easily interpolated. We also show that this model provides some improvements in terms of isotropy and grid invariance, and propose a new restoration model which transforms an image into a very similar one that can be easily interpolated. Next, we propose an adaptation of the TV-ICE (Total Variation Iterated Conditional Expectations) model, recently proposed by Louchet and Moisan in 2014, to address the restoration of images corrupted by a Poisson noise. We derive an explicit form of the recursion operator involved by this scheme, and show linear convergence of the algorithm, as well as the absence of staircasing effect for the produced images. We also show that this variant involves the numerical evaluation of a generalized incomplete gamma function which must be carefully handled due to the numerical errors inherent to the finite precision floating-point calculus. Then, we propose an fast algorithm dedicated to the evaluation of this generalized

[1]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[2]  Robert T. Collins,et al.  Multitarget data association with higher-order motion models , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[4]  W J Lentz,et al.  Generating bessel functions in mie scattering calculations using continued fractions. , 1976, Applied optics.

[5]  Gabriele Moser,et al.  An a-contrario approach for unsupervised change detection in radar images , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[6]  Pierre Weiss,et al.  A proximal method for inverse problems in image processing , 2009, 2009 17th European Signal Processing Conference.

[7]  Cor J. Veenman,et al.  Motion tracking as a constrained optimization problem , 2003, Pattern Recognit..

[8]  Maël Primet,et al.  Probabilistic methods for point tracking and biological image analysis. (Méthodes probabiliste pour le suivi de points et l'analyse d'images biologiques) , 2011 .

[9]  Thomas Brox,et al.  iPiano: Inertial Proximal Algorithm for Nonconvex Optimization , 2014, SIAM J. Imaging Sci..

[10]  W. Ring Structural Properties of Solutions to Total Variation Regularization Problems , 2000 .

[11]  Mubarak Shah,et al.  A non-iterative greedy algorithm for multi-frame point correspondence , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[12]  Cor J. Veenman,et al.  Resolving Motion Correspondence for Densely Moving Points , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  R. Rockafellar Monotone Operators and the Proximal Point Algorithm , 1976 .

[14]  Stanley Osher,et al.  Image Denoising and Decomposition with Total Variation Minimization and Oscillatory Functions , 2004, Journal of Mathematical Imaging and Vision.

[15]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[16]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[17]  M. Nikolova Model distortions in Bayesian MAP reconstruction , 2007 .

[18]  ANTONIN CHAMBOLLE,et al.  An Algorithm for Total Variation Minimization and Applications , 2004, Journal of Mathematical Imaging and Vision.

[19]  Michael Frankfurter,et al.  Numerical Recipes In C The Art Of Scientific Computing , 2016 .

[20]  B. V. Dean,et al.  Studies in Linear and Non-Linear Programming. , 1959 .

[21]  Jean-François Aujol,et al.  Irregular to Regular Sampling, Denoising, and Deconvolution , 2009, Multiscale Model. Simul..

[22]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[23]  Yurii Nesterov,et al.  Lectures on Convex Optimization , 2018 .

[24]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[25]  Marc Teboulle,et al.  Fast Gradient-Based Algorithms for Constrained Total Variation Image Denoising and Deblurring Problems , 2009, IEEE Transactions on Image Processing.

[26]  Mila Nikolova,et al.  Local Strong Homogeneity of a Regularized Estimator , 2000, SIAM J. Appl. Math..

[27]  Walter Gautschi,et al.  A Computational Procedure for Incomplete Gamma Functions , 1979, TOMS.

[28]  A. Chambolle,et al.  On the Convergence of the Iterates of the “Fast Iterative Shrinkage/Thresholding Algorithm” , 2015, J. Optim. Theory Appl..

[29]  Guy Gilboa,et al.  A Spectral Approach to Total Variation , 2013, SSVM.

[30]  H. H. Rachford,et al.  On the numerical solution of heat conduction problems in two and three space variables , 1956 .

[31]  L. Moisan,et al.  Maximal meaningful events and applications to image analysis , 2003 .

[32]  Bernard Rougé,et al.  SMOS images restoration from L1A data: A sparsity-based variational approach , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[33]  Gwendoline Blanchet,et al.  An explicit sharpness index related to global phase coherence , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[34]  Laurent Condat,et al.  Discrete Total Variation: New Definition and Minimization , 2017, SIAM J. Imaging Sci..

[35]  Tony F. Chan,et al.  Total variation blind deconvolution , 1998, IEEE Trans. Image Process..

[36]  D. Ruderman The statistics of natural images , 1994 .

[37]  Bernard Rougé,et al.  Restoration and Zoom of Irregularly Sampled, Blurred, and Noisy Images by Accurate Total Variation Minimization with Local Constraints , 2006, Multiscale Model. Simul..

[38]  Lionel Moisan,et al.  No-Reference Image Quality Assessment and Blind Deblurring with Sharpness Metrics Exploiting Fourier Phase Information , 2015, Journal of Mathematical Imaging and Vision.

[39]  I. Daubechies,et al.  An iterative thresholding algorithm for linear inverse problems with a sparsity constraint , 2003, math/0307152.

[40]  Jacques Froment,et al.  Adapted Total Variation for Artifact Free Decompression of JPEG Images , 2005, Journal of Mathematical Imaging and Vision.

[41]  Julien Rabin,et al.  A Statistical Approach to the Matching of Local Features , 2009, SIAM J. Imaging Sci..

[42]  Frank Dellaert,et al.  MCMC-based particle filtering for tracking a variable number of interacting targets , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  Lionel Moisan,et al.  Total variation denoising using posterior expectation , 2008, 2008 16th European Signal Processing Conference.

[44]  L. Moisan How to discretize the Total Variation of an image? , 2007 .

[45]  Lionel Moisan,et al.  Point tracking: an a-contrario approach , 2012 .

[46]  J. Hills Effect of binary stars on the dynamical evolution of stellar clusters. II. Analytic evolutionary models , 1975 .

[47]  Pascal Fua,et al.  Ieee Transactions on Pattern Analysis and Machine Intelligence 1 Multiple Object Tracking Using K-shortest Paths Optimization , 2022 .

[48]  Y. Bar-Shalom,et al.  On hierarchical tracking for the real world , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[49]  R. H. Pratt,et al.  Rayleigh scattering by neutral atoms, 100 eV to 10 MeV , 1980 .

[50]  Jérôme Darbon,et al.  Image Restoration with Discrete Constrained Total Variation Part I: Fast and Exact Optimization , 2006, Journal of Mathematical Imaging and Vision.

[51]  Mohamed-Jalal Fadili,et al.  Total Variation Projection With First Order Schemes , 2011, IEEE Transactions on Image Processing.

[52]  Dmitry Chetverikov,et al.  Feature Point Tracking for Incomplete Trajectories , 1999, Computing.

[53]  A. Chambolle,et al.  Geometric properties of solutions to the total variation denoising problem , 2016, 1602.00087.

[54]  Stanley Osher,et al.  Modeling Textures with Total Variation Minimization and Oscillating Patterns in Image Processing , 2003, J. Sci. Comput..

[55]  Lionel Moisan,et al.  Accelerated A-contrario detection of smooth trajectories , 2014, 2014 22nd European Signal Processing Conference (EUSIPCO).

[56]  Gilles Aubert,et al.  Efficient Schemes for Total Variation Minimization Under Constraints in Image Processing , 2009, SIAM J. Sci. Comput..

[57]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[58]  G. P. Bhattacharjee,et al.  The Incomplete Gamma Integral , 1970 .

[59]  Daniel Cremers,et al.  Anisotropic Huber-L1 Optical Flow , 2009, BMVC.

[60]  Patrick Pérez,et al.  Video Inpainting of Complex Scenes , 2014, SIAM J. Imaging Sci..

[61]  I. Vardavas,et al.  Effect of redistribution on the emission peaks from chromospheric-type stellar atmospheres , 1974 .

[62]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[63]  Amandine Robin,et al.  An A-Contrario Approach for Subpixel Change Detection in Satellite Imagery , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[64]  Lionel Moisan,et al.  A-contrario Detectability of Spots in Textured Backgrounds , 2009, Journal of Mathematical Imaging and Vision.

[65]  M. A. Chaudhry,et al.  On a Class of Incomplete Gamma Functions with Applications , 2001 .

[66]  Ming-Jun Lai,et al.  The Convergence of a Central-Difference Discretization of Rudin-Osher-Fatemi Model for Image Denoising , 2009, SSVM.

[67]  Jean-Michel Morel,et al.  Level lines based disocclusion , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[68]  François Malgouyres,et al.  Total variation based interpolation , 1998, 9th European Signal Processing Conference (EUSIPCO 1998).

[69]  Florence Tupin,et al.  Poisson NL means: Unsupervised non local means for Poisson noise , 2010, 2010 IEEE International Conference on Image Processing.

[70]  Mingqiang Zhu,et al.  An Efficient Primal-Dual Hybrid Gradient Algorithm For Total Variation Image Restoration , 2008 .

[71]  W. Ziemer Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation , 1989 .

[72]  Yves Meyer,et al.  Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures , 2001 .

[73]  Mubarak Shah,et al.  Establishing motion correspondence , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[74]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[75]  Pierre Weiss,et al.  Algorithmes rapides d'optimisation convexe. Applications à la reconstruction d'images et à la détection de changements. (Fast algorithms for convex optimization. Applications to image reconstruction and change detection) , 2008 .

[76]  Antonin Chambolle,et al.  An Upwind Finite-Difference Method for Total Variation-Based Image Smoothing , 2011, SIAM J. Imaging Sci..

[77]  Patrick L. Combettes,et al.  Proximal Splitting Methods in Signal Processing , 2009, Fixed-Point Algorithms for Inverse Problems in Science and Engineering.

[78]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[79]  C. Lanczos,et al.  A Precision Approximation of the Gamma Function , 1964 .

[80]  José M. Bioucas-Dias,et al.  Restoration of Poissonian Images Using Alternating Direction Optimization , 2010, IEEE Transactions on Image Processing.

[81]  Antonin Chambolle,et al.  A First-Order Primal-Dual Algorithm for Convex Problems with Applications to Imaging , 2011, Journal of Mathematical Imaging and Vision.

[82]  Andy M. Yip,et al.  Simultaneous total variation image inpainting and blind deconvolution , 2005, Int. J. Imaging Syst. Technol..

[83]  R. Kannan,et al.  Advanced Analysis: On The Real Line , 1996 .

[84]  Marc Teboulle,et al.  A simple algorithm for a class of nonsmooth convex-concave saddle-point problems , 2015, Oper. Res. Lett..

[85]  Massimo Fornasier,et al.  Theoretical Foundations and Numerical Methods for Sparse Recovery , 2010, Radon Series on Computational and Applied Mathematics.

[86]  Yann Gousseau,et al.  Are Natural Images of Bounded Variation? , 2001, SIAM J. Math. Anal..

[87]  Antonin Chambolle,et al.  Diagonal preconditioning for first order primal-dual algorithms in convex optimization , 2011, 2011 International Conference on Computer Vision.

[88]  L. Moisan,et al.  Algorithm 1006: Fast and Accurate Evaluation of a Generalized Incomplete Gamma Function , 2016, ACM Trans. Math. Softw..

[89]  Antonin Chambolle,et al.  Image Decomposition into a Bounded Variation Component and an Oscillating Component , 2005, Journal of Mathematical Imaging and Vision.

[90]  Lionel Moisan,et al.  Periodic Plus Smooth Image Decomposition , 2011, Journal of Mathematical Imaging and Vision.

[91]  Antonin Chambolle,et al.  Total Variation Minimization and a Class of Binary MRF Models , 2005, EMMCVPR.

[92]  W. J. Thron,et al.  Continued Fractions: Analytic Theory and Applications , 1984 .

[93]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[94]  Mariella Dimiccoli,et al.  Particle detection and tracking in fluorescence time-lapse imaging: a contrario approach , 2015, Machine Vision and Applications.

[95]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[96]  Agnès Desolneux,et al.  An Anisotropic A Contrario Framework for the Detection of Convergences in Images , 2016, Journal of Mathematical Imaging and Vision.

[97]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[98]  Annie A. M. Cuyt,et al.  Handbook of Continued Fractions for Special Functions , 2008 .

[99]  Jean-Michel Morel,et al.  From Gestalt Theory to Image Analysis: A Probabilistic Approach , 2007 .

[100]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[101]  Glendon Ralph Pugh AN ANALYSIS OF THE LANCZOS GAMMA APPROXIMATION , 2004 .

[102]  Agnès Desolneux,et al.  When the a contrario approach becomes generative , 2015, International Journal of Computer Vision.

[103]  Frederick R. Forst,et al.  On robust estimation of the location parameter , 1980 .

[104]  V. Linetsky PRICING EQUITY DERIVATIVES SUBJECT TO BANKRUPTCY , 2006 .

[105]  Julie Delon,et al.  Accurate Junction Detection and Characterization in Natural Images , 2013, International Journal of Computer Vision.

[106]  David G. Lowe,et al.  Perceptual Organization and Visual Recognition , 2012 .

[107]  Rafael Grompone von Gioi,et al.  LSD: A Fast Line Segment Detector with a False Detection Control , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[108]  B. Mamedov,et al.  Evaluation of Incomplete Gamma Functions Using Downward Recursion and Analytical Relations , 2004 .

[109]  Bernard Rouge,et al.  Nonlinear spectral extrapolation: new results and their application to spatial and medical imaging , 1995, Optics + Photonics.

[110]  Max Wertheimer,et al.  Untersuchungen zur Lehre von der Gestalt , .

[111]  Jean-Michel Morel,et al.  A Review of Image Denoising Algorithms, with a New One , 2005, Multiscale Model. Simul..

[112]  Tony F. Chan,et al.  High-Order Total Variation-Based Image Restoration , 2000, SIAM J. Sci. Comput..

[113]  Jean-Christophe Pesquet,et al.  A Convex Optimization Approach for Depth Estimation Under Illumination Variation , 2009, IEEE Transactions on Image Processing.

[114]  F. Doré Convergences de structures linéaires dans les images : modélisation stochastique et applications en imagerie médicale , 2014 .

[115]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[116]  Antonin Chambolle,et al.  Total Variation in Imaging , 2015, Handbook of Mathematical Methods in Imaging.

[117]  François Malgouyres,et al.  Edge Direction Preserving Image Zooming: A Mathematical and Numerical Analysis , 2001, SIAM J. Numer. Anal..

[118]  Bruce W. Char,et al.  On Stieltjes’ continued fraction for the gamma function , 1980 .

[119]  I. Csiszár Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems , 1991 .

[120]  Curtis R. Vogel,et al.  Ieee Transactions on Image Processing Fast, Robust Total Variation{based Reconstruction of Noisy, Blurred Images , 2022 .

[121]  Lionel Moisan,et al.  Total Variation denoising using iterated conditional expectation , 2014, 2014 22nd European Signal Processing Conference (EUSIPCO).

[122]  Lionel Moisan,et al.  Edge Detection by Helmholtz Principle , 2001, Journal of Mathematical Imaging and Vision.

[123]  P. L. Combettes Iterative construction of the resolvent of a sum of maximal monotone operators , 2009 .

[124]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[125]  Serge Winitzki Computing the Incomplete Gamma Function to Arbitrary Precision , 2003, ICCSA.

[126]  Wayne Fullerton,et al.  Algorithm 434: modified incomplete gamma function [G 2] , 1972, CACM.

[127]  Lionel Moisan,et al.  Posterior Expectation of the Total Variation Model: Properties and Experiments , 2013, SIAM J. Imaging Sci..

[128]  Leonid P. Yaroslavsky,et al.  Signal sinc-interpolation: a fast computer algorithm , 1996 .

[129]  Antonin Chambolle,et al.  Dual Norms and Image Decomposition Models , 2005, International Journal of Computer Vision.

[130]  Pascal Getreuer,et al.  Linear Methods for Image Interpolation , 2011, Image Process. Line.

[131]  Yaakov Bar-Shalom,et al.  Sonar tracking of multiple targets using joint probabilistic data association , 1983 .

[132]  Karl Kunisch,et al.  Total Generalized Variation , 2010, SIAM J. Imaging Sci..

[133]  Alessandro Foi,et al.  Image Denoising by Sparse 3-D Transform-Domain Collaborative Filtering , 2007, IEEE Transactions on Image Processing.

[134]  P. Nicolini,et al.  Large extra dimensions and small black holes at the LHC , 2010, 1001.2211.

[135]  Bradley J. Lucier,et al.  Error Bounds for Finite-Difference Methods for Rudin-Osher-Fatemi Image Smoothing , 2011, SIAM J. Numer. Anal..

[136]  Y. Moreno,et al.  Epidemic outbreaks in complex heterogeneous networks , 2001, cond-mat/0107267.

[137]  J. Delon,et al.  Study of the digital camera acquisition process and statistical modeling of the sensor raw data , 2013 .

[138]  Jean-François Aujol,et al.  Stability of Over-Relaxations for the Forward-Backward Algorithm, Application to FISTA , 2015, SIAM J. Optim..

[139]  Tieyong Zeng,et al.  Total Variation Restoration of Images Corrupted by Poisson Noise with Iterated Conditional Expectations , 2015, SSVM.

[140]  Mohamed-Jalal Fadili,et al.  A Generalized Forward-Backward Splitting , 2011, SIAM J. Imaging Sci..

[141]  Pascal Fua,et al.  Multicamera People Tracking with a Probabilistic Occupancy Map , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[142]  Lionel Moisan,et al.  An aliasing detection algorithm based on suspicious colocalizations of Fourier coefficients , 2010, 2010 IEEE International Conference on Image Processing.

[143]  Aggelos K. Katsaggelos,et al.  Total variation super resolution using a variational approach , 2008, 2008 15th IEEE International Conference on Image Processing.

[144]  R Bellman,et al.  On the Theory of Dynamic Programming. , 1952, Proceedings of the National Academy of Sciences of the United States of America.

[145]  Dmitry Chetverikov,et al.  Experimental Comparative Evaluation of Feature Point Tracking Algorithms , 1998, Theoretical Foundations of Computer Vision.

[146]  P. J. Huber Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .

[147]  Michael Unser,et al.  Cardinal spline filters: Stability and convergence to the ideal sinc interpolator , 1992, Signal Process..

[148]  Rafael Grompone von Gioi,et al.  On Straight Line Segment Detection , 2008, Journal of Mathematical Imaging and Vision.

[149]  Cuneyt Akinlar,et al.  EDCircles: A real-time circle detector with a false detection control , 2013, Pattern Recognit..