A spatially resolved ion temperature diagnostic for the National Ignition Facility.

The concepts and initial development efforts for a spatially resolved ion temperature diagnostic are described. The diagnostic is intended for Inertial Confinement Fusion experiments at the National Ignition Facility and is an integration of neutron aperture imaging and ion temperature techniques. The neutron imaging technique is extended by recording tomographic projections of the radiation-to-light converter on a streak camera. The streak record is used to calculate images at multiple times during the arrival of the thermally broadened 14.1 MeV neutron flux. The resulting set of images is used to determine the spatially resolved ion temperature.