Late Cenozoic structural and tectonic development of the western margin of the central Andean Plateau in southwest Peru

Structural and thermochronologic studies of the western margin of the central Andean Plateau show changing styles of deformation through time that give insights into tectonic evolution. In southwest Peru, uplift of the plateau proceeded in several distinct phases. First, NW striking, NE dipping reverse faults accommodated uplift prior to ∼14–16 Ma. Subsequent uplift of the plateau relative to the piedmont (between the plateau and the Pacific Ocean) occurred between ∼14 and 2.2 Ma and was accommodated by NW striking, SW dipping normal faults and subparallel monoclinal folds. The youngest phase of uplift affected the piedmont region and the plateau margin as a coherent block. Although the uplift magnitude associated with phase 1 is unknown, phases 2 and 3 resulted in at least 2.4–3.0 km of uplift. Up to 1 km of this may have occurred during phase 3. Geodynamic processes occurring in both the continental interior and the subduction zone likely contributed to uplift.

[1]  J. T. Singewald,et al.  The Geology of the Corocoro Copper District of Bolivia , 2010 .

[2]  K. Whipple,et al.  Quantifying canyon incision and Andean Plateau surface uplift, southwest Peru: A thermochronometer and numerical modeling approach , 2009 .

[3]  G. Wörner,et al.  Geochronologic and stratigraphic constraints on canyon incision and Miocene uplift of the Central Andes in Peru , 2007 .

[4]  Bryan L. Isacks,et al.  Geomorphic evidence for post‐10 Ma uplift of the western flank of the central Andes 18°30′–22°S , 2007 .

[5]  J. Eiler,et al.  Paleoelevation Reconstruction using Pedogenic Carbonates , 2007 .

[6]  K. Whipple,et al.  Uplift of the western margin of the Andean plateau revealed from canyon incision history, southern Peru , 2007 .

[7]  R. Barke,et al.  Late Cenozoic uplift of the Eastern Cordillera, Bolivian Andes , 2006 .

[8]  C. Laj,et al.  Counterclockwise rotation of late Eocene–Oligocene fore‐arc deposits in southern Peru and its significance for oroclinal bending in the central Andes , 2006 .

[9]  J. Libarkin,et al.  Rapid late Miocene rise of the Bolivian Altiplano: Evidence for removal of mantle lithosphere , 2006 .

[10]  J. Eiler,et al.  Rapid Uplift of the Altiplano Revealed Through 13C-18O Bonds in Paleosol Carbonates , 2006, Science.

[11]  J. P. Byrne,et al.  Determination of Uranium and Thorium in Zircon, Apatite, and Fluorite: Application to Laser (U-Th)/He Thermochronology , 2005 .

[12]  K. Miller,et al.  The Phanerozoic Record of Global Sea-Level Change , 2005, Science.

[13]  G. Hérail,et al.  Late Cenozoic deformation and uplift of the western flank of the Altiplano: Evidence from the depositional, tectonic, and geomorphologic evolution and shallow seismic activity (northern Chile at 19°30′S) , 2005 .

[14]  P. Reiners,et al.  U-Th zonation-dependent alpha-ejection in (U-Th)/He chronometry , 2005 .

[15]  G. Hérail,et al.  Possible orogeny-parallel lower crustal flow and thickening in the Central Andes , 2005 .

[16]  O. Oncken,et al.  Crustal balance and crustal flux from shortening estimates in the Central Andes , 2005 .

[17]  O. Oncken,et al.  Uplift of the western Altiplano plateau: Evidence from the Precordillera between 20° and 21°S (northern Chile) , 2004 .

[18]  Luísa Pinto,et al.  Sedimentación sintectónica asociada a las estructuras neógenas en la Precordillera de la zona de Moquella, Tarapacá (19°15'S, norte de Chile) , 2004 .

[19]  Paul Davis,et al.  Cenozoic climate change as a possible cause for the rise of the Andes , 2003, Nature.

[20]  N. Kukowski,et al.  Tectonic erosion of the Peruvian forearc, Lima Basin, by subduction and Nazca Ridge collision , 2003 .

[21]  L. Husson,et al.  Thickening the Altiplano crust by gravity‐driven crustal channel flow , 2003 .

[22]  C. Ranero,et al.  Subduction erosion and basal friction along the sediment-starved convergent margin off Antofagasta, Chile , 2003 .

[23]  A. Hampel The migration history of the Nazca Ridge along the Peruvian active margin: a re-evaluation , 2002 .

[24]  Anthony A. P. Koppers,et al.  ArArCALC-software for 40 Ar/ 39 Ar age calculations , 2002 .

[25]  K. Farley,et al.  He diffusion and (U–Th)/He thermochronometry of zircon: initial results from Fish Canyon Tuff and Gold Butte , 2002 .

[26]  V. Ramos,et al.  The Pampean flat-slab of the Central Andes , 2002 .

[27]  G. Wörner,et al.  Evolution of the West Andean Escarpment at 18°S (N. Chile) during the last 25 Ma: uplift, erosion and collapse through time , 2002 .

[28]  M. Garcia Evolution oligo-miocène de l'Altiplano occidental ( arc et avant arc du nord du Chili, Arica ) : tectonique , volcanisme, sédimentation, géomorphologie et bilan érosion-sédimentation. , 2001 .

[29]  K. M. Gregory-Wodzicki,et al.  Studies in Neotropical Paleobotany. XV. A Mio-Pliocene palynoflora from the Eastern Cordillera, Bolivia: implications for the uplift history of the Central Andes. , 2001, American journal of botany.

[30]  K. M. Gregory-Wodzicki,et al.  Uplift history of the Central and Northern Andes: A review , 2000 .

[31]  C. Findlay,et al.  Subduction erosion along the Middle America convergent margin , 2000, Nature.

[32]  M. Gutscher,et al.  The "lost Inca Plateau": cause of flat subduction beneath Peru? , 1999 .

[33]  A. Sáez,et al.  Late Neogene lacustrine record and palaeogeography in the Quillagua–Llamara basin, Central Andean fore-arc (northern Chile) , 1999 .

[34]  K. Sieh,et al.  Uplift and erosion of the San Bernardino Mountains associated with transpression along the San Andreas fault, California, as constrained by radiogenic helium thermochronometry , 1998 .

[35]  R. Somoza Updated azca (Farallon)—South America relative motions during the last 40 My: implications for mountain building in the central Andean region , 1998 .

[36]  P. Renne,et al.  Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating , 1998 .

[37]  S. Kay,et al.  THE EVOLUTION OF THE ALTIPLANO-PUNA PLATEAU OF THE CENTRAL ANDES , 1997 .

[38]  K. Farley,et al.  The effects of long alpha-stopping distances on (UTh)/He ages , 1996 .

[39]  C. Paola,et al.  Palaeohydraulics revisited: palaeoslope estimation in coarse‐grained braided rivers , 1996 .

[40]  R. Charrier Uplift of the western border of the Altiplano on a west-vergent thrust system , 1996 .

[41]  S. Kay,et al.  Delamination and delamination magmatism , 1993 .

[42]  Thomas A. Cahill,et al.  Seismicity and shape of the subducted Nazca Plate , 1992 .

[43]  E. McKee,et al.  Cenozoic stratigraphy, magmatic activity, compressive deformation, and uplift in northern Peru , 1990 .

[44]  B. Isacks Uplift of the Central Andean Plateau and bending of the Bolivian orocline , 1988 .

[45]  P. Molnar,et al.  Relative motion of the Nazca (Farallon) and South American Plates since Late Cretaceous time , 1987 .

[46]  J. Mercier,et al.  Quaternary normal and reverse faulting and the state of stress in the central Andes of south Peru , 1985 .

[47]  A. Nur,et al.  Spatial gaps in arc volcanism: The effect of collision or subduction of oceanic plateaus , 1985 .

[48]  R. Tosdal,et al.  Cenozoic polyphase landscape and tectonic evolution of the Cordillera Occidental, southernmost Peru , 1984 .

[49]  F. Mégard The Andean orogenic period and its major structures in central and northern Peru , 1984, Journal of the Geological Society.

[50]  O. L. Jensen Andean tectonics related to geometry of subducted Nazca plate: Discussion and reply , 1984 .

[51]  A. Nur,et al.  Volcanic gaps due to oblique consumption of aseismic ridges , 1983 .

[52]  R. Pilger Plate reconstructions, aseismic ridges, and low-angle subduction beneath the Andes , 1981 .

[53]  E. McKee,et al.  Early Tertiary “Incaic” tectonism, uplift, and volcanic activity, Andes of central Peru , 1979 .

[54]  R. Steiger,et al.  Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmochronology , 1977 .

[55]  Cedrig Mortimer,et al.  The Cenozoic history of the southern Atacama Desert, Chile , 1973, Journal of the Geological Society.

[56]  G. Steinmann Geologie von Peru , 1929 .

[57]  N. Theys,et al.  Author ' s personal copy Paleosurfaces , paleoelevation , and the mechanisms for the late Miocene topographic development of the Altiplano plateau , 2008 .

[58]  P. Reiners Zircon (U-Th)/He Thermochronometry , 2005 .

[59]  K. Farley (U-Th)/He Dating: Techniques, Calibrations, and Applications , 2002 .

[60]  S. Lamb,et al.  High-altitude palaeosurfaces in the Bolivian Andes: evidence for late Cenozoic surface uplift , 1997, Geological Society, London, Special Publications.

[61]  J. Dewey,et al.  Cenozoic evolution of the Central Andes in Bolivia and northern Chile , 1997, Geological Society, London, Special Publications.

[62]  M. Sébrier,et al.  Tectonics and magmatism in the Peruvian Andes from late Oligocene time to the Present , 1991 .

[63]  M. David,et al.  Évolution tectonique cénozoïque et néotectonique du Piémont Pacifique dans la région d'Arequipa (Andes du Sud Pérou) , 1985 .

[64]  A. Nur,et al.  Volcanic gaps and the consumption of aseismic ridges in South America , 1981 .

[65]  Derek York,et al.  Least squares fitting of a straight line with correlated errors , 1968 .