Computation of Singularities for Engineering Design

The computation of singularities or critical points of polynomial and other more complex vector fields in a finite subdomain of the n-dimensional Euclidean space is the underlying fundamental process behind several important engineering and scientific problems. These include, for example, design, analysis, scientific visualization, and manufacture of complex objects in a computer environment. This paper starts with a review of extant solution techniques and focuses on recent research by the Design Laboratory in this general area. Specifically, we summarize the algorithmic techniques we have developed on computation of solutions of systems of non-linear polynomial equations and other more complex equations involving irrational functions. Such equations arise in shape interrogation problems including intersections of sculptured objects, symmetry transforms, distance function computations, visualization of rational and offset or parallel surfaces, stationary point computations of maps of physical properties, and in detailed analysis of differential geometry properties of complex free-form surfaces. Examples illustrate our techniques and their applications.

[1]  Tor Dokken Finding intersections of B-spline represented geometries using recursive subdivision techniques , 1985, Comput. Aided Geom. Des..

[2]  Halit Nebi Gürsoy,et al.  Shape interrogation by medial axis transform for automated analysis , 1989 .

[3]  Thomas W. Sederberg,et al.  Loop detection in surface patch intersections , 1988, Comput. Aided Geom. Des..

[4]  Rida T. Farouki,et al.  Algorithms for polynomials in Bernstein form , 1988, Comput. Aided Geom. Des..

[5]  V. Arnold,et al.  Ordinary Differential Equations , 1973 .

[6]  Nicholas M. Patrikalakis,et al.  Surface Intersections for Geometric Modeling , 1990 .

[7]  F. Muchmeyer On surface imperfections , 1987 .

[8]  Aristides A. G. Requicha,et al.  Offsetting operations in solid modelling , 1986, Comput. Aided Geom. Des..

[9]  W. I. Zangwill,et al.  Global Continuation Methods for Finding all Solutions to Polynomial Systems of Equations in N Variables , 1980 .

[10]  Tosiyasu L. Kunii,et al.  Visualization: new concepts and techniques to integrate diverse application areas , 1991 .

[11]  W. Boehm Inserting New Knots into B-spline Curves , 1980 .

[12]  B. Buchberger,et al.  Grobner Bases : An Algorithmic Method in Polynomial Ideal Theory , 1985 .

[13]  Tomoyuki Nishita,et al.  Ray tracing trimmed rational surface patches , 1990, SIGGRAPH.

[14]  R. Riesenfeld,et al.  Bounds on a polynomial , 1981 .

[15]  L. Nackman,et al.  Automatic mesh generation using the symmetric axis transformation of polygonal domains , 1992, Proc. IEEE.

[16]  I. Faux,et al.  Computational Geometry for Design and Manufacture , 1979 .

[17]  Eric Klassen,et al.  Exploiting topological and geometric properties for selective subdivision , 1985, SCG '85.

[18]  John F. Canny,et al.  Generalised Characteristic Polynomials , 1990, J. Symb. Comput..

[19]  Nicholas M. Patrikalakis,et al.  Method for intersecting algebraic surfaces with rational polynomial patches , 1991, Comput. Aided Des..

[20]  Åke Björck,et al.  Numerical Methods , 2021, Markov Renewal and Piecewise Deterministic Processes.

[21]  R. Lee,et al.  Two-Dimensional Critical Point Configuration Graphs , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  B. Coe Aaker, David A. (Ed.).Advertising Management. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1975 , 1976 .

[23]  Manfredo P. do Carmo,et al.  Differential geometry of curves and surfaces , 1976 .

[24]  Tomoyuki Nishita,et al.  Geometric hermite approximation of surface patch intersection curves , 1991, Comput. Aided Geom. Des..

[25]  R.T. Farouki,et al.  The approximation of non-degenerate offset surfaces , 1986, Comput. Aided Geom. Des..

[26]  Michael E. Hohmeyer,et al.  A surface intersection algorithm based on loop detection , 1991, SMA '91.

[27]  R. Kellogg,et al.  Pathways to solutions, fixed points, and equilibria , 1983 .

[28]  Nicholas M. Patrikalakis,et al.  Topological and differential-equation methods for surface intersections , 1992, Comput. Aided Des..

[29]  etc. Krasnosel'skiy Plane Vector Fields , 1966 .

[30]  Rida T. Farouki,et al.  Surface Analysis Methods , 1986, IEEE Computer Graphics and Applications.

[31]  Tom Lyche,et al.  Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics , 1980 .

[32]  Albrecht Preusser,et al.  Computing area filling contours for surfaces defined by piecewise polynomials , 1986, Comput. Aided Geom. Des..

[33]  T. Sederberg Algorithm for algebraic curve intersection , 1989 .

[34]  Nicholas M. Patrikalakis,et al.  Automated interrogation and adaptive subdivision of shape using medial axis transform , 1991 .

[35]  Robert B. Jerard,et al.  Methods for detecting errors in numerically controlled machining of sculptured surfaces , 1989, IEEE Computer Graphics and Applications.

[36]  J. Guiver,et al.  Multidimensional systems theory : progress, directions and open problems in multidimensional systems , 1985 .

[37]  Nicholas M. Patrikalakis Scientific Visualization of Physical Phenomena , 1991, Springer Japan.

[38]  Nicholas M. Patrikalakis,et al.  Interrogation of Offsets of Polynomial Surface Patches , 1991, Eurographics.

[39]  Anthony V. Fiacco,et al.  Extremal Methods and Systems Analysis , 1980 .

[40]  George Anthony Kriezis Algorithms for rational spline surface intersections , 1990 .