Predicting the evolution of antibiotic resistance genes

Antibiotic resistance is thought to evolve rapidly in response to antibiotic use. At present, we lack effective tools to assess how rapidly existing resistance genes are likely to evolve to yield resistance to newly introduced drugs. To address this problem, a method has been developed for in vitro evolution experiments to help predict how long it will take antibiotic resistance to arise — potentially allowing informed decisions about usage to be made.

[1]  B. Hall,et al.  Experimental prediction of the evolution of cefepime resistance from the CMY-2 AmpC beta-lactamase. , 2003, Genetics.

[2]  S. Palumbi,et al.  Humans as the world's greatest evolutionary force. , 2001, Science.

[3]  G. Reid,et al.  ALTERNATIVES TO ANTIBIOTIC USE: PROBIOTICS FOR THE GUT , 2002, Animal biotechnology.

[4]  W. Vahjen,et al.  Probiotic feed additives - effectiveness and expected modes of action , 2001 .

[5]  S. Magnet,et al.  Activation of the Cryptic aac(6′)-IyAminoglycoside Resistance Gene of Salmonella by a Chromosomal Deletion Generating a Transcriptional Fusion , 1999, Journal of bacteriology.

[6]  L. Gutmann,et al.  A silent carbapenemase gene in strains of Bacteroides fragilis can be expressed after a one-step mutation. , 1992, FEMS microbiology letters.

[7]  H. Gaskins,et al.  ANTIBIOTICS AS GROWTH PROMOTANTS:MODE OF ACTION , 2002, Animal biotechnology.

[8]  Miriam Barlow,et al.  Experimental prediction of the natural evolution of antibiotic resistance. , 2003, Genetics.

[9]  W. Stemmer Rapid evolution of a protein in vitro by DNA shuffling , 1994, Nature.

[10]  B. Hall,et al.  Phylogenetic Analysis Shows That the OXA b-Lactamase Genes Have Been on Plasmids for Millions of Years , 2002, Journal of Molecular Evolution.

[11]  Barry G. Hall,et al.  Structure-Based Phylogenies of the Serine β-Lactamases , 2003, Journal of Molecular Evolution.

[12]  S. Salipante,et al.  GeneHunter, a Transposon Tool for Identification and Isolation of Cryptic Antibiotic Resistance Genes , 2003, Antimicrobial Agents and Chemotherapy.

[13]  M. Bedford Removal of antibiotic growth promoters from poultry diets: implications and strategies to minimise subsequent problems , 2000 .

[14]  S. Lemon,et al.  A Public Health Action Plan to Combat Antimicrobial Resistance , 2003 .

[15]  Miriam Barlow,et al.  Predicting evolutionary potential: in vitro evolution accurately reproduces natural evolution of the tem beta-lactamase. , 2002, Genetics.

[16]  S. T. Pittman,et al.  Effect of Phytase on Production Parameters and Nutrient Availability in Broilers and Laying Hens: A Review , 2001 .

[17]  A. Ranaweera,et al.  Antimicrobial resistance , 1999 .

[18]  S. Salipante,et al.  The Metallo-β-Lactamases Fall into Two Distinct Phylogenetic Groups , 2003, Journal of Molecular Evolution.

[19]  D. Livermore Can better prescribing turn the tide of resistance? , 2004, Nature Reviews Microbiology.

[20]  S. Salipante,et al.  Determining the limits of the evolutionary potential of an antibiotic resistance gene. , 2003, Molecular biology and evolution.

[21]  C. Walsh Opinion — anti-infectives: Where will new antibiotics come from? , 2003, Nature Reviews Microbiology.

[22]  R. Hall,et al.  Integrons: Novel DNA elements which capture genes by site-specific recombination , 2005, Genetica.

[23]  S. Salipante,et al.  Independent Origins of Subgroup Bl+B2 and Subgroup B3Metallo-β-Lactamases , 2004, Journal of Molecular Evolution.

[24]  R. Mosenthin,et al.  The potential use of prebiotics in pig nutrition. , 2000 .

[25]  B. Hall,et al.  Origin and Evolution of the AmpC β-Lactamases of Citrobacter freundii , 2002, Antimicrobial Agents and Chemotherapy.

[26]  M. Verstegen,et al.  ALTERNATIVES TO THE USE OF ANTIBIOTICS AS GROWTH PROMOTERS FOR MONOGASTRIC ANIMALS , 2002, Animal biotechnology.

[27]  I. Phillips,et al.  The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. , 2003, The Journal of antimicrobial chemotherapy.