An alternative synthesis of Tamiflu®: a synthetic challenge and the identification of a ruthenium-catalyzed dihydroxylation route

[1]  T. Hudlický,et al.  Symmetry-based design for the chemoenzymatic synthesis of oseltamivir (Tamiflu) from ethyl benzoate. , 2009, Angewandte Chemie.

[2]  T. Fukuyama,et al.  A practical synthesis of (−)-oseltamivir , 2009 .

[3]  W. Lu,et al.  A short and practical synthesis of oseltamivir phosphate (Tamiflu) from (-)-shikimic acid. , 2009, The Journal of organic chemistry.

[4]  T. Oshitari,et al.  Efficient Asymmetric Synthesisof Oseltamivir from d-Mannitol , 2009 .

[5]  Y. Hayashi,et al.  High-yielding synthesis of the anti-influenza neuramidase inhibitor (-)-oseltamivir by three "one-pot" operations. , 2009, Angewandte Chemie.

[6]  M. Kanai,et al.  A synthesis of Tamiflu by using a barium-catalyzed asymmetric Diels-Alder-type reaction. , 2009, Angewandte Chemie.

[7]  A. Willis,et al.  A chemoenzymatic synthesis of the anti-influenza agent Tamiflu , 2008 .

[8]  Chi‐Huey Wong,et al.  A concise and flexible synthesis of the potent anti-influenza agents tamiflu and tamiphosphor. , 2008, Angewandte Chemie.

[9]  H. Iding,et al.  New, efficient synthesis of oseltamivir phosphate (Tamiflu) via enzymatic desymmetrization of a meso-1,3-cyclohexanedicarboxylic acid diester. , 2008, The Journal of organic chemistry.

[10]  B. Trost,et al.  A concise synthesis of (-)-oseltamivir. , 2008, Angewandte Chemie.

[11]  M. Kanai,et al.  Synthetic Strategies for Oseltamivir Phosphate , 2008 .

[12]  T. Hamada,et al.  Efficient short step synthesis of Corey's tamiflu intermediate. , 2008, Organic letters.

[13]  P. Toy,et al.  The Mitsunobu reaction: origin, mechanism, improvements, and applications. , 2007, Chemistry, an Asian journal.

[14]  An-Suei Yang,et al.  Synthesis of tamiflu and its phosphonate congeners possessing potent anti-influenza activity. , 2007, Journal of the American Chemical Society.

[15]  D. Hagberg,et al.  An iron carbonyl approach to the influenza neuraminidase inhibitor oseltamivir. , 2007, Chemical communications.

[16]  S. Abrecht,et al.  The synthetic-technical development of oseltamivir phosphate Tamiflu™ : A race against time , 2007 .

[17]  A. Sakakura,et al.  Enantioselective halocyclization of polyprenoids induced by nucleophilic phosphoramidites , 2007, Nature.

[18]  M. Kanai,et al.  A concise synthesis of Tamiflu: third generation route via the Diels–Alder reaction and the Curtius rearrangement , 2007 .

[19]  M. Kanai,et al.  Second generation catalytic asymmetric synthesis of Tamiflu: allylic substitution route. , 2007, Organic letters.

[20]  S. Minakata,et al.  Electrophilic cyclization of N-alkenylamides using a chloramine-T/I2 system , 2006 .

[21]  V. Farina,et al.  Tamiflu: the supply problem. , 2006, Angewandte Chemie.

[22]  S. Minakata,et al.  Practical and convenient synthesis of N-heterocycles: stereoselective cyclization of N-alkenylamides with t-BuOI under neutral conditions. , 2006, Organic letters.

[23]  Z. Yao,et al.  Ring-closing metathesis-based synthesis of (3R,4R,5S)-4-acetylamino-5-amino-3-hydroxy- cyclohex-1-ene-carboxylic acid ethyl ester: a functionalized cycloalkene skeleton of GS4104. , 2006, The Journal of organic chemistry.

[24]  M. Kanai,et al.  De novo synthesis of Tamiflu via a catalytic asymmetric ring-opening of meso-aziridines with TMSN3. , 2006, Journal of the American Chemical Society.

[25]  E. Corey,et al.  A short enantioselective pathway for the synthesis of the anti-influenza neuramidase inhibitor oseltamivir from 1,3-butadiene and acrylic acid. , 2006, Journal of the American Chemical Society.

[26]  P. Harrington,et al.  The synthetic development of the anti-influenza neuraminidase inhibitor oseltamivir phosphate (Tamiflu®): A challenge for synthesis & process research , 2004 .

[27]  B. Plietker,et al.  An improved protocol for the RuO4-catalyzed dihydroxylation of olefins. , 2003, Organic letters.

[28]  T. Jamison,et al.  Nickel-catalyzed reductive coupling of alkynes and epoxides. , 2003, Journal of the American Chemical Society.

[29]  Xinming Li,et al.  A three-step preparation of MAC reagents from malononitrile , 2003 .

[30]  Hahn Kim,et al.  A mild and efficient method for the stereoselective formation of C-O bonds: palladium-catalyzed allylic etherification using zinc(II) alkoxides. , 2002, Organic letters.

[31]  David K. Leahy,et al.  Regio- and enantiospecific rhodium-catalyzed allylic etherification reactions using copper(I) alkoxides: influence of the copper halide salt on selectivity. , 2002, Journal of the American Chemical Society.

[32]  Y. Tanabe,et al.  Facile and Practical Methods for the Sulfonylation of Alcohols Using Ts(Ms)Cl and Me2N(CH2)nNMe2 as a Key Base , 1999 .

[33]  M. Hennig,et al.  Industrial Synthesis of the Key Precursor in the Synthesis of the Anti-Influenza Drug Oseltamivir Phosphate (Ro 64-0796/002, GS-4104-02): Ethyl (3R,4S,5S)-4,5-epoxy-3-(1-ethyl-propoxy)-cyclohex-1-ene-1-carboxylate , 1999 .

[34]  K. Kent,et al.  Practical Total Synthesis of the Anti-Influenza Drug GS-4104 , 1998 .

[35]  W G Laver,et al.  Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. , 1997, Journal of the American Chemical Society.

[36]  D. M. Ryan,et al.  Rational design of potent sialidase-based inhibitors of influenza virus replication , 1993, Nature.

[37]  R. M. Hanson The synthetic methodology of nonracemic glycidol and related 2,3-epoxy alcohols , 1991 .

[38]  Yoshinori Yamamoto,et al.  Development of a new acyl anion equivalent for the preparation of masked activated esters, and their use to prepare a dipeptide , 1990 .

[39]  O. Mitsunobu The Use of Diethyl Azodicarboxylate and Triphenylphosphine in Synthesis and Transformation of Natural Products , 1981 .