暂无分享,去创建一个
[1] James G. Oxley,et al. Matroid theory , 1992 .
[2] V. Buzek,et al. Quantum secret sharing , 1998, quant-ph/9806063.
[3] Frantisek Matús,et al. Infinitely Many Information Inequalities , 2007, 2007 IEEE International Symposium on Information Theory.
[4] Geoff Whittle. Duality in Polymatroids and Set Functions , 1992, Comb. Probab. Comput..
[5] T. Helgason. Aspects of the theory of hypermatroids , 1974 .
[6] C. McDiarmid. Rado's theorem for polymatroids , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.
[7] F. Mat. Two Constructions on Limits of Entropy Functions , 2007, IEEE Trans. Inf. Theory.
[8] H. Narayanan. Submodular functions and electrical networks , 1997 .
[9] Zhen Zhang,et al. On Characterization of Entropy Function via Information Inequalities , 1998, IEEE Trans. Inf. Theory.
[10] László Lovász,et al. Submodular functions and convexity , 1982, ISMP.
[11] A. Winter,et al. A New Inequality for the von Neumann Entropy , 2004, quant-ph/0406162.
[12] D. Gottesman. Theory of quantum secret sharing , 1999, quant-ph/9910067.
[13] H. Q. Nguyen. Semimodular functions and combinatorial geometries , 1978 .
[14] Pradeep Kiran Sarvepalli,et al. Matroids and Quantum Secret Sharing Schemes , 2009, ArXiv.
[15] Nicholas Pippenger,et al. The inequalities of quantum information theory , 2003, IEEE Trans. Inf. Theory.
[16] Satoru Fujishige,et al. Submodular functions and optimization , 1991 .
[17] R. Cleve,et al. HOW TO SHARE A QUANTUM SECRET , 1999, quant-ph/9901025.
[18] Pradeep Kiran Sarvepalli. Quantum codes and symplectic matroids , 2014, 2014 IEEE International Symposium on Information Theory.
[19] Ernest F. Brickell,et al. On the classification of ideal secret sharing schemes , 1989, Journal of Cryptology.
[20] Andreas J. Winter,et al. Infinitely Many Constrained Inequalities for the von Neumann Entropy , 2011, IEEE Transactions on Information Theory.