Short–wave scattering: problems and techniques

The paper reviews the problem of modelling short–wave scattering. Short waves are understood to be waves in which the wavelength is much smaller than any other parameters in the problem. The background to wave problems is briefly described. The major numerical methods for wave modelling, finite elements, finite differences, boundary integrals and their variants are then outlined. The recent developments in algorithms in these fields are then very briefly summarized, as an introduction to the more specialized papers to come.

[1]  Armel de La Bourdonnaye,et al.  High frequency approximation of integral equations modeling scattering phenomena , 1994 .

[2]  J. Berkhoff,et al.  Mathematical models for simple harmonic linear water waves: Wave diffraction and refraction , 1976 .

[3]  T. Hagstrom Exact and High-Order Boundary Conditions in the Time Domain , 1998 .

[4]  P. Morse,et al.  Methods of theoretical physics , 1955 .

[5]  T. Abboud,et al.  Méthode des équations intégrales pour les hautes fréquences , 1994 .

[6]  Klaus Schulten,et al.  The fast multipole algorithm , 2000, Comput. Sci. Eng..

[7]  Dan Givoli,et al.  Recent advances in the DtN FE Method , 1999 .

[8]  S. I. Hariharan,et al.  A Systematic Approach for Constructing Asymptotic Boundary Conditions for Wave-Like Equations , 1998 .

[9]  P. Ortiz Finite elements using a plane-wave basis for scattering of surface water waves , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[10]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[11]  W. Chew,et al.  Computational electromagnetics: the physics of smooth versus oscillatory fields , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  P. Bettess,et al.  Use of wave boundary elements for acoustic computations. , 2003 .

[13]  R. J. Astley,et al.  Three-dimensional wave-envelope elements of variable order for acoustic radiation and scattering , 1998 .

[14]  Ivo Babuška,et al.  A posteriori error estimation for finite element solutions of Helmholtz' equation—Part II: estimation of the pollution error , 1997 .

[15]  C. J. Chapman SIMILARITY VARIABLES FOR SOUND RADIATION IN A UNIFORM FLOW , 2000 .

[16]  R. J. Astley,et al.  Mapped Wave Envelope Elements for Acoustical Radiation and Scattering , 1994 .

[17]  Jaime Peraire,et al.  A time domain unstructured grid approach to the simulation of electromagnetic scattering in piecewise homogeneous media , 1996 .

[18]  V. Rokhlin Rapid solution of integral equations of classical potential theory , 1985 .

[19]  N. Peake,et al.  On applications of high-frequency asymptotics in aeroacoustics , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[20]  V. Rokhlin Rapid Solution of Integral Equations of Scattering Theory , 1990 .

[21]  Eric Darrigrand,et al.  Coupling of fast multipole method and microlocal discretization for the 3-D Helmholtz equation , 2002 .

[22]  J. Hesthaven,et al.  Nodal high-order methods on unstructured grids , 2002 .

[23]  B. Després,et al.  SUR UNE FORMULATION VARIATIONNELLE DE TYPE ULTRA-FAIBLE , 1994 .

[24]  Nigel P. Weatherill,et al.  Parallel processing for the simulation of problems involving scattering of electromagnetic waves , 1998 .

[25]  R. J. Astley,et al.  Modelling of short wave diffraction problems using approximating systems of plane waves , 2002 .

[26]  O. C. Zienkiewicz,et al.  Diffraction and refraction of surface waves using finite and infinite elements , 1977 .

[27]  Jari P. Kaipio,et al.  The Ultra-Weak Variational Formulation for Elastic Wave Problems , 2004, SIAM J. Sci. Comput..

[28]  I. Babuska,et al.  The design and analysis of the Generalized Finite Element Method , 2000 .

[29]  D. Givoli Numerical Methods for Problems in Infinite Domains , 1992 .

[30]  R. Astley Infinite elements for wave problems: a review of current formulations and an assessment of accuracy , 2000 .

[31]  Thomas L. Geers IUTAM Symposium on Computational Methods for UnBound Domains , 1998 .

[32]  C. Farhat,et al.  The Discontinuous Enrichment Method , 2000 .

[33]  David S. Burnett,et al.  Prolate and oblate spheroidal acoustic infinite elements , 1998 .

[34]  Eric Darve,et al.  The Fast Multipole Method , 2000 .

[35]  Eric F Darve Regular ArticleThe Fast Multipole Method: Numerical Implementation , 2000 .

[36]  Bernardo Cockburn Discontinuous Galerkin methods , 2003 .

[37]  J. Peraire,et al.  An unstructured grid algorithm for the solution of Maxwell's equations in the time domain , 1994 .

[38]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[39]  O. Bruno,et al.  A fast, high-order algorithm for the solution of surface scattering problems: basic implementation, tests, and applications , 2001 .

[40]  D. Givoli Non-reflecting boundary conditions , 1991 .

[41]  F. Rellich,et al.  Über das asymptotische Verhalten der Lösungen von ...u + ...u = 0 in unendlichen Gebieten. , 1943 .

[42]  Omar Laghrouche,et al.  Short wave modelling using special finite elements , 2000 .

[43]  I. Babuska,et al.  Dispersion analysis and error estimation of Galerkin finite element methods for the Helmholtz equation , 1995 .

[44]  P. Bettess,et al.  Plane wave interpolation in direct collocation boundary element method for radiation and wave scattering: numerical aspects and applications , 2003 .

[45]  J. Hesthaven,et al.  High–order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[46]  G. Whitham Linear and non linear waves , 1974 .

[47]  Eli Turkel,et al.  Far field boundary conditions for compressible flows , 1982 .

[48]  C. Mei The applied dynamics of ocean surface waves , 1983 .

[50]  Jan Mandel,et al.  The Finite Ray Element Method for the Helmholtz Equation of Scattering: First Numerical Experiments , 1997 .

[51]  I. Babuska,et al.  The partition of unity finite element method , 1996 .

[52]  Thomas Hagstrom,et al.  A formulation of asymptotic and exact boundary conditions using local operators , 1998 .

[53]  A. Sommerfeld Mathematische Theorie der Diffraction , 1896 .

[54]  P. Bettess,et al.  Diffraction of short waves modelled using new mapped wave envelope finite and infinite elements , 1999 .

[55]  P. Monk,et al.  Optimizing the Perfectly Matched Layer , 1998 .

[56]  C. K. Thornhill,et al.  Part I. The diffraction theory of sea waves and the shelter afforded by breakwaters , 1952, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[57]  Peter Monk,et al.  A least-squares method for the Helmholtz equation , 1999 .

[58]  R. J. Astley,et al.  Transient spheroidal elements for unbounded wave problems , 1998 .

[59]  Oscar P. Bruno,et al.  Surface scattering in three dimensions: an accelerated high–order solver , 2001, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[60]  O. Cessenat,et al.  Application of an Ultra Weak Variational Formulation of Elliptic PDEs to the Two-Dimensional Helmholtz Problem , 1998 .

[61]  Bernard Peseux,et al.  A numerical integration scheme for special finite elements for the Helmholtz equation , 2003 .

[62]  T. Warburton Application of the Discontinuous Galerkin Method to Maxwell’s Equations Using Unstructured Polymorphic hp-Finite Elements , 2000 .

[63]  Mark Ainsworth,et al.  Discrete Dispersion Relation for hp-Version Finite Element Approximation at High Wave Number , 2004, SIAM J. Numer. Anal..

[64]  Eric Michielssen,et al.  Fast transient analysis of acoustic wave scattering from rigid bodies using a two-level plane wave time domain algorithm , 1999 .

[65]  Jiming Song,et al.  Multilevel fast‐multipole algorithm for solving combined field integral equations of electromagnetic scattering , 1995 .

[66]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[67]  Eric Darve,et al.  Fast-multipole method: a mathematical study , 1997 .

[68]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[69]  R. J. Astley,et al.  Three-dimensional wave-envelope elements of variable order for acoustic radiation and scattering. Part I. Formulation in the frequency domain , 1998 .

[70]  Frank Ihlenburg,et al.  ON FUNDAMENTAL ASPECTS OF EXTERIOR APPROXIMATIONS WITH INFINITE ELEMENTS , 2000 .

[71]  R. Higdon Absorbing boundary conditions for difference approximations to the multi-dimensional wave equation , 1986 .

[72]  K. Atkinson Elementary numerical analysis , 1985 .

[73]  A. Majda,et al.  Absorbing boundary conditions for the numerical simulation of waves , 1977 .

[74]  Jon Trevelyan,et al.  P-wave and S-wave decomposition in boundary integral equation for plane elastodynamic problems , 2003 .

[75]  Eric F Darve The Fast Multipole Method , 2000 .

[76]  K. Gerdes,et al.  A REVIEW OF INFINITE ELEMENT METHODS FOR EXTERIOR HELMHOLTZ PROBLEMS , 2000 .

[77]  Charbel Farhat,et al.  A discontinuous finite element method for the helmholtz equation , 2000 .

[78]  James Lighthill,et al.  Waves In Fluids , 1966 .

[79]  E. Michielssen,et al.  Fast Evaluation of Three-Dimensional Transient Wave Fields Using Diagonal Translation Operators , 1998 .

[80]  O. Zienkiewicz,et al.  The coupling of the finite element method and boundary solution procedures , 1977 .

[81]  E. Michielssen,et al.  The plane-wave time-domain algorithm for the fast analysis of transient wave phenomena , 1999 .

[82]  O. C. Zienkiewicz,et al.  Mapped infinite elements for exterior wave problems , 1985 .

[83]  Leslie Greengard,et al.  A fast algorithm for particle simulations , 1987 .

[84]  P. Ortiz,et al.  An improved partition of unity finite element model for diffraction problems , 2001 .

[85]  R. J. Astley,et al.  Wave envelope and infinite elements for acoustical radiation , 1983 .

[86]  David S. Burnett,et al.  A three‐dimensional acoustic infinite element based on a prolate spheroidal multipole expansion , 1994 .

[87]  M. Gunzburger,et al.  Boundary conditions for the numerical solution of elliptic equations in exterior regions , 1982 .

[88]  Ivo Babuška,et al.  A posteriori error estimation for finite element solutions of Helmholtz’ equation. part I: the quality of local indicators and estimators , 1997 .

[89]  A. De La Bourdonnaye UNE METHODE DE DISCRETISATION MICROLOCALE ET SON APPLICATION A UN PROBLEMEDE DIFFRACTION , 1994 .

[90]  J. Kaipio,et al.  Computational aspects of the ultra-weak variational formulation , 2002 .

[91]  G. Whitham,et al.  Linear and Nonlinear Waves , 1976 .

[92]  P. Bettess,et al.  New special wave boundary elements for short wave problems , 2002 .

[93]  T. L. Geers IUTAM Symposium on Computational Methods for Unbounded Domains : proceedings of the IUTAM symposium held in Boulder, Colorado, USA, 27-31 July 1997 , 1998 .

[94]  R. Coifman,et al.  The fast multipole method for the wave equation: a pedestrian prescription , 1993, IEEE Antennas and Propagation Magazine.

[95]  Edmund Chadwick,et al.  Modelling of progressive short waves using wave envelopes , 1997 .