Doubled Color Codes

We show how to perform a fault-tolerant universal quantum computation in 2D architectures using only transversal unitary operators and local syndrome measurements. Our approach is based on a doubled version of the 2D color code. It enables a transversal implementation of all logical gates in the Clifford+T basis using the gauge fixing method proposed recently by Paetznick and Reichardt. The gauge fixing requires six-qubit parity measurements for Pauli operators supported on faces of the honeycomb lattice with two qubits per site. Doubled color codes are promising candidates for the experimental demonstration of logical gates since they do not require state distillation. Secondly, we propose a Maximum Likelihood algorithm for the error correction and gauge fixing tasks that enables a numerical simulation of logical circuits in the Clifford+T basis. The algorithm can be used in the online regime such that a new error syndrome is revealed at each time step. We estimate the average number of logical gates that can be implemented reliably for the smallest doubled color code and a toy noise model that includes depolarizing memory errors and syndrome measurement errors.

[1]  N. C. Jones,et al.  Logic Synthesis for Fault-Tolerant Quantum Computers , 2013, 1310.7290.

[2]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[3]  Fernando Pastawski,et al.  Fault-tolerant logical gates in quantum error-correcting codes , 2014, 1408.1720.

[4]  S. Bravyi,et al.  Magic-state distillation with low overhead , 2012, 1209.2426.

[5]  Benjamin J. Brown,et al.  Fault-tolerant error correction with the gauge color code , 2015, Nature Communications.

[6]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[7]  Jens Koch,et al.  Randomized benchmarking and process tomography for gate errors in a solid-state qubit. , 2008, Physical review letters.

[8]  Sergey Bravyi,et al.  Classification of topologically protected gates for local stabilizer codes. , 2012, Physical review letters.

[9]  Jim Harrington,et al.  Gauge color codes in two dimensions , 2015, 1512.04193.

[10]  David Poulin,et al.  Fault-tolerant conversion between the Steane and Reed-Muller quantum codes. , 2014, Physical review letters.

[11]  A. Fowler,et al.  High-threshold universal quantum computation on the surface code , 2008, 0803.0272.

[12]  Peter Selinger,et al.  Efficient Clifford+T approximation of single-qubit operators , 2012, Quantum Inf. Comput..

[13]  Akihiro Munemasa,et al.  On triply even binary codes , 2010, J. Lond. Math. Soc..

[14]  Michael E. Beverland,et al.  Universal transversal gates with color codes: A simplified approach , 2014, 1410.0069.

[15]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[16]  H. Bombin Gauge Color Codes: Optimal Transversal Gates and Gauge Fixing in Topological Stabilizer Codes , 2013, 1311.0879.

[17]  Adam Paetznick,et al.  Universal fault-tolerant quantum computation with only transversal gates and error correction. , 2013, Physical review letters.

[18]  Andrew J. Landahl,et al.  Quantum computing by color-code lattice surgery , 2014, 1407.5103.

[19]  H. Bombin,et al.  Topological quantum distillation. , 2006, Physical review letters.

[20]  Simon J. Devitt,et al.  Surface code implementation of block code state distillation , 2013, Scientific Reports.

[21]  Bryan Eastin,et al.  Restrictions on transversal encoded quantum gate sets. , 2008, Physical review letters.

[22]  E. Knill,et al.  Randomized Benchmarking of Quantum Gates , 2007, 0707.0963.

[23]  J. Preskill,et al.  Confinement Higgs transition in a disordered gauge theory and the accuracy threshold for quantum memory , 2002, quant-ph/0207088.

[24]  John Preskill,et al.  Protected gates for topological quantum field theories , 2014, 1409.3898.

[25]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[26]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[27]  Dmitri Maslov,et al.  Fast and efficient exact synthesis of single-qubit unitaries generated by clifford and T gates , 2012, Quantum Inf. Comput..

[28]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[29]  Andrew W. Cross,et al.  Demonstration of a quantum error detection code using a square lattice of four superconducting qubits , 2015, Nature Communications.

[30]  John M. Martinis,et al.  State preservation by repetitive error detection in a superconducting quantum circuit , 2015, Nature.

[31]  Barbara M. Terhal,et al.  The complexity of quantum spin systems on a two-dimensional square lattice , 2008, Quantum Inf. Comput..