On some classes of constacyclic codes over polynomial residue rings
暂无分享,去创建一个
[1] T. Honold,et al. Weighted modules and representations of codes , 1998 .
[2] H. Dinh. Constacyclic Codes of Length p^s Over Fpm + uFpm , 2010 .
[3] Parampalli Udaya,et al. Decoding of cyclic codes over F2 + µF2 , 1999, IEEE Trans. Inf. Theory.
[4] Thomas Blackford,et al. Negacyclic codes over Z4 of even length , 2003, IEEE Trans. Inf. Theory.
[5] Marcus Greferath,et al. Gray isometries for finite chain rings and a nonlinear ternary (36, 312, 15) code , 1999, IEEE Trans. Inf. Theory.
[6] H. Dinh. Constacyclic Codes of Length $2^s$ Over Galois Extension Rings of ${\BBF}_{2}+u{\BBF}_2$ , 2009, IEEE Transactions on Information Theory.
[7] N. J. A. Sloane,et al. A linear construction for certain Kerdock and Preparata codes , 1993, ArXiv.
[8] Carmen-Simona Nedeloaia. Weight distributions of cyclic self-dual codes , 2003, IEEE Trans. Inf. Theory.
[9] Jacobus H. van Lint,et al. Repeated-root cyclic codes , 1991, IEEE Trans. Inf. Theory.
[10] Patrick Solé,et al. Duadic Codes over F2 + uF2 , 2001, Applicable Algebra in Engineering, Communication and Computing.
[11] A. Nechaev,et al. Kerdock code in a cyclic form , 1989 .
[12] Jay A. Wood. Duality for modules over finite rings and applications to coding theory , 1999 .
[13] Karl-Heinz Zimmermann,et al. On generalizations of repeated-root cyclic codes , 1996, IEEE Trans. Inf. Theory.
[14] Masaaki Harada,et al. Type II Codes Over F2 + u F2 , 1999, IEEE Trans. Inf. Theory.
[15] Hai Quang Dinh,et al. On the linear ordering of some classes of negacyclic and cyclic codes and their distance distributions , 2008, Finite Fields Their Appl..
[16] Parampalli Udaya,et al. Cyclic Codes and Self-Dual Codes Over F2 + uF2 , 1999, IEEE Trans. Inf. Theory.
[17] Ali Ghrayeb,et al. A mass formula and rank of /spl Zopf//sub 4/ cyclic codes of length 2/sup e/ , 2004, IEEE Transactions on Information Theory.
[18] N. J. A. Sloane,et al. The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.
[19] W. Cary Huffman,et al. Fundamentals of Error-Correcting Codes , 1975 .
[20] H. Q. Dinh,et al. Negacyclic codes of length 2/sup s/ over galois rings , 2005, IEEE Transactions on Information Theory.
[21] Ricardo Alfaro,et al. On distances and self-dual codes over Fq[u]∕(ut) , 2009 .
[22] B. R. McDonald. Finite Rings With Identity , 1974 .
[23] Marcus Greferath,et al. Finite-Ring Combinatorics and MacWilliams' Equivalence Theorem , 2000, J. Comb. Theory A.
[24] Sergio R. López-Permouth,et al. Cyclic and negacyclic codes over finite chain rings , 2004, IEEE Transactions on Information Theory.
[25] Ron M. Roth,et al. On cyclic MDS codes of length q over GF(q) , 1986, IEEE Trans. Inf. Theory.
[26] S. Berman. Semisimple cyclic and Abelian codes. II , 1967 .
[27] Daniel J. Costello,et al. Polynomial weights and code constructions , 1973, IEEE Trans. Inf. Theory.
[28] Ana Salagean,et al. Repeated-root cyclic and negacyclic codes over a finite chain ring , 2006, Discret. Appl. Math..
[29] R. Brualdi,et al. Handbook Of Coding Theory , 2011 .
[30] Cheong Boon Soh,et al. A note on the q-ary image of a qm-ary repeated-root cyclic code , 1997, IEEE Trans. Inf. Theory.
[31] Graham H. Norton,et al. On the Structure of Linear and Cyclic Codes over a Finite Chain Ring , 2000, Applicable Algebra in Engineering, Communication and Computing.
[32] James L. Massey,et al. On Repeated-root Cyclic Codes , 1991, IEEE Trans. Inf. Theory.
[33] Irfan Siap,et al. Linear Codes over $\mathbb{F}_{q}[u]/(u^s)$ with Respect to the Rosenbloom–Tsfasman Metric , 2006, Des. Codes Cryptogr..
[34] Jessie Macwilliams. Error-correcting codes for multiple-level transmission , 1961 .