On some classes of constacyclic codes over polynomial residue rings

The polynomial residue ring $\mathcal R_a=\frac{\mathbb F_{2^m}[u]}{\langle u^a \rangle}=\mathbb F_{2^m} + u \mathbb F_{2^m}+ \dots + u^{a - 1}\mathbb F_{2^m}$ is a chain ring with residue field $\mathbb F_{2^m}$, that contains precisely $(2^m-1)2^{m(a-1)}$ units, namely, $\alpha_0+u\alpha_1+\dots+u^{a-1}\alpha_{a-1}$, where $\alpha_0,\alpha_1,\dots,\alpha_{a-1} \in \mathbb F_{2^m}$, $\alpha_0 \neq 0$. Two classes of units of $\mathcal R_a$ are considered, namely, $\lambda=1+u\lambda_1+\dots+u^{a-1}\lambda_{a-1}$, where $\lambda_1, \dots, \lambda_{a-1} \in \mathbb F_{2^m}$, $\lambda_1 \neq 0$; and $\Lambda=\Lambda_0+u\Lambda_1+\dots+u^{a-1}\Lambda_{a-1}$, where $\Lambda_0, \Lambda_1, \dots, \Lambda_{a-1} \in \mathbb F_{2^m}$, $\Lambda_0 \neq 0, \Lambda_1 \neq 0$. Among other results, the structure, Hamming and homogeneous distances of $\Lambda$-constacyclic codes of length $2^s$ over $\mathcal R_a$, and the structure of $\lambda$-constacyclic codes of any length over $\mathcal R_a$ are established.

[1]  T. Honold,et al.  Weighted modules and representations of codes , 1998 .

[2]  H. Dinh Constacyclic Codes of Length p^s Over Fpm + uFpm , 2010 .

[3]  Parampalli Udaya,et al.  Decoding of cyclic codes over F2 + µF2 , 1999, IEEE Trans. Inf. Theory.

[4]  Thomas Blackford,et al.  Negacyclic codes over Z4 of even length , 2003, IEEE Trans. Inf. Theory.

[5]  Marcus Greferath,et al.  Gray isometries for finite chain rings and a nonlinear ternary (36, 312, 15) code , 1999, IEEE Trans. Inf. Theory.

[6]  H. Dinh Constacyclic Codes of Length $2^s$ Over Galois Extension Rings of ${\BBF}_{2}+u{\BBF}_2$ , 2009, IEEE Transactions on Information Theory.

[7]  N. J. A. Sloane,et al.  A linear construction for certain Kerdock and Preparata codes , 1993, ArXiv.

[8]  Carmen-Simona Nedeloaia Weight distributions of cyclic self-dual codes , 2003, IEEE Trans. Inf. Theory.

[9]  Jacobus H. van Lint,et al.  Repeated-root cyclic codes , 1991, IEEE Trans. Inf. Theory.

[10]  Patrick Solé,et al.  Duadic Codes over F2 + uF2 , 2001, Applicable Algebra in Engineering, Communication and Computing.

[11]  A. Nechaev,et al.  Kerdock code in a cyclic form , 1989 .

[12]  Jay A. Wood Duality for modules over finite rings and applications to coding theory , 1999 .

[13]  Karl-Heinz Zimmermann,et al.  On generalizations of repeated-root cyclic codes , 1996, IEEE Trans. Inf. Theory.

[14]  Masaaki Harada,et al.  Type II Codes Over F2 + u F2 , 1999, IEEE Trans. Inf. Theory.

[15]  Hai Quang Dinh,et al.  On the linear ordering of some classes of negacyclic and cyclic codes and their distance distributions , 2008, Finite Fields Their Appl..

[16]  Parampalli Udaya,et al.  Cyclic Codes and Self-Dual Codes Over F2 + uF2 , 1999, IEEE Trans. Inf. Theory.

[17]  Ali Ghrayeb,et al.  A mass formula and rank of /spl Zopf//sub 4/ cyclic codes of length 2/sup e/ , 2004, IEEE Transactions on Information Theory.

[18]  N. J. A. Sloane,et al.  The Z4-linearity of Kerdock, Preparata, Goethals, and related codes , 1994, IEEE Trans. Inf. Theory.

[19]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[20]  H. Q. Dinh,et al.  Negacyclic codes of length 2/sup s/ over galois rings , 2005, IEEE Transactions on Information Theory.

[21]  Ricardo Alfaro,et al.  On distances and self-dual codes over Fq[u]∕(ut) , 2009 .

[22]  B. R. McDonald Finite Rings With Identity , 1974 .

[23]  Marcus Greferath,et al.  Finite-Ring Combinatorics and MacWilliams' Equivalence Theorem , 2000, J. Comb. Theory A.

[24]  Sergio R. López-Permouth,et al.  Cyclic and negacyclic codes over finite chain rings , 2004, IEEE Transactions on Information Theory.

[25]  Ron M. Roth,et al.  On cyclic MDS codes of length q over GF(q) , 1986, IEEE Trans. Inf. Theory.

[26]  S. Berman Semisimple cyclic and Abelian codes. II , 1967 .

[27]  Daniel J. Costello,et al.  Polynomial weights and code constructions , 1973, IEEE Trans. Inf. Theory.

[28]  Ana Salagean,et al.  Repeated-root cyclic and negacyclic codes over a finite chain ring , 2006, Discret. Appl. Math..

[29]  R. Brualdi,et al.  Handbook Of Coding Theory , 2011 .

[30]  Cheong Boon Soh,et al.  A note on the q-ary image of a qm-ary repeated-root cyclic code , 1997, IEEE Trans. Inf. Theory.

[31]  Graham H. Norton,et al.  On the Structure of Linear and Cyclic Codes over a Finite Chain Ring , 2000, Applicable Algebra in Engineering, Communication and Computing.

[32]  James L. Massey,et al.  On Repeated-root Cyclic Codes , 1991, IEEE Trans. Inf. Theory.

[33]  Irfan Siap,et al.  Linear Codes over $\mathbb{F}_{q}[u]/(u^s)$ with Respect to the Rosenbloom–Tsfasman Metric , 2006, Des. Codes Cryptogr..

[34]  Jessie Macwilliams Error-correcting codes for multiple-level transmission , 1961 .