Single-stage gradient-based stellarator coil design: Optimization for near-axis quasi-symmetry

We present a new coil design paradigm for magnetic confinement in stellarators. Our approach directly optimizes coil shapes and coil currents to produce a vacuum quasi-symmetric magnetic field with a target rotational transform on the magnetic axis. This approach differs from the traditional two-stage approach in which first a magnetic configuration with desirable physics properties is found, and then coils to approximately realize this magnetic configuration are designed. The proposed single-stage approach allows us to find a compromise between confinement and engineering requirements, i.e., find easy-to-build coils with good confinement properties. Using forward and adjoint sensitivities, we derive derivatives of the physical quantities in the objective, which is constrained by a nonlinear periodic differential equation. In two numerical examples, we compare different gradient-based descent algorithms and find that incorporating approximate second-order derivative information through a quasi-Newton method is crucial for convergence. We also explore the optimization landscape in the neighborhood of a minimizer and find many directions in which the objective is mostly flat, indicating ample freedom to find simple and thus easy-to-build coils.

[1]  P. Kua,et al.  Physics Design for ARIES-CS , 2007 .

[2]  R. L. Dewar,et al.  Stellarator symmetry , 1998 .

[3]  P. Merkel,et al.  Three-dimensional free boundary calculations using a spectral Green's function method , 1986 .

[4]  M. Landreman,et al.  An adjoint method for gradient-based optimization of stellarator coil shapes , 2018, Nuclear Fusion.

[5]  Alfio Borzì,et al.  Computational Optimization of Systems Governed by Partial Differential Equations , 2012, Computational science and engineering.

[6]  M. Drevlak,et al.  Automated Optimization of Stellarator Coils , 1998 .

[7]  J. Kisslinger,et al.  ESTELL: A Quasi‐Toroidally Symmetric Stellarator , 2013 .

[8]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[9]  Yuntao Song,et al.  New method to design stellarator coils without the winding surface , 2017, 1705.02333.

[10]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[11]  H. Mynick,et al.  Optimizing stellarators for turbulent transport. , 2010, Physical review letters.

[12]  P. Garabedian,et al.  Three-dimensional analysis of tokamaks and stellarators , 2008, Proceedings of the National Academy of Sciences.

[13]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[14]  Matt Landreman,et al.  An improved current potential method for fast computation of stellarator coil shapes , 2016, 1609.04378.

[15]  Matt Landreman,et al.  Constructing stellarators with quasisymmetry to high order , 2019, Journal of Plasma Physics.

[16]  Matt Landreman,et al.  Direct construction of optimized stellarator shapes. Part 2. Numerical quasisymmetric solutions , 2018, Journal of Plasma Physics.

[17]  Frank Jenko,et al.  Stellarator and tokamak plasmas: a comparison , 2012 .

[18]  Max Gunzburger,et al.  Perspectives in flow control and optimization , 1987 .

[19]  Matt Landreman,et al.  Direct construction of optimized stellarator shapes. Part 1. Theory in cylindrical coordinates , 2018, Journal of Plasma Physics.

[20]  M. Landreman,et al.  A New Optimized Quasihelically SymmetricStellarator , 2020, 2004.11426.

[21]  Stuart R. Hudson,et al.  Optimized finite-build stellarator coils using automatic differentiation , 2020, Nuclear Fusion.

[22]  C. Nührenberg,et al.  Properties of a new quasi-axisymmetric configuration , 2018, Nuclear Fusion.

[23]  M. Landreman Figures of merit for stellarators near the magnetic axis , 2020, Journal of Plasma Physics.

[24]  P. Heitzenroeder,et al.  Engineering cost & schedule lessons learned on NCSX , 2009, 2009 23rd IEEE/NPSS Symposium on Fusion Engineering.

[25]  H.-S. Bosch,et al.  Towards assembly completion and preparation of experimental campaigns of Wendelstein 7-X in the perspective of a path to a stellarator fusion power plant , 2013 .

[26]  Per Helander,et al.  Theory of plasma confinement in non-axisymmetric magnetic fields , 2014, Reports on progress in physics. Physical Society.

[27]  David A. Garren,et al.  Existence of quasihelically symmetric stellarators , 1991 .

[28]  Sergei V. Kasilov,et al.  Optimization of energy confinement in the 1/ν regime for stellarators , 2008, J. Comput. Phys..

[29]  David L. T. Anderson,et al.  Experimental demonstration of improved neoclassical transport with quasihelical symmetry. , 2007, Physical review letters.

[30]  Haifeng Liu,et al.  Magnetic Configuration and Modular Coil Design for the Chinese First Quasi-Axisymmetric Stellarator , 2018, Plasma and Fusion Research.

[31]  J. Nührenberg,et al.  Quasi-Helically Symmetric Toroidal Stellarators , 1988 .

[32]  Juan Carlos De Los Reyes,et al.  Numerical PDE-Constrained Optimization , 2015 .

[33]  J. Geiger,et al.  Physics in the magnetic configuration space of W7-X , 2014 .

[34]  H. Wobig Magnetic Surfaces and Localized Perturbations in the Wendelstein VII-A Stellarator , 1987 .

[35]  Dennis J Strickler,et al.  Designing Coils for Compact Stellarators , 2002 .

[36]  Allen H. Boozer,et al.  Plasma equilibrium with rational magnetic surfaces , 1981 .

[37]  R. E. Hatcher,et al.  Physics of the compact advanced stellarator NCSX , 2001 .

[38]  A. Boozer Establishment of magnetic coordinates for a given magnetic field , 1982 .

[39]  David E Williamson,et al.  Development of a Robust Quasi-Poloidal Compact Stellarator , 2004 .

[40]  E. D. Fredrickson,et al.  Recent advances in the design of quasiaxisymmetric stellarator plasma configurations , 2001 .

[41]  Satish C. Reddy,et al.  A MATLAB differentiation matrix suite , 2000, TOMS.

[42]  Lloyd N. Trefethen,et al.  The Exponentially Convergent Trapezoidal Rule , 2014, SIAM Rev..

[43]  P. Merkel,et al.  Solution of stellarator boundary value problems with external currents , 1987 .

[44]  Allen H. Boozer,et al.  Quasi-helical symmetry in stellarators , 1995 .

[45]  T. Brown,et al.  Engineering optimization of stellarator coils lead to improvements in device maintenance , 2015, 2015 IEEE 26th Symposium on Fusion Engineering (SOFE).

[46]  N. B. Marushchenko,et al.  Physics in the Magnetic Configuration Space of W 7X , 2014 .

[47]  R.L. Strykowsky,et al.  Lessons learned in risk management on NCSX , 2009, 2009 23rd IEEE/NPSS Symposium on Fusion Engineering.

[48]  John L. Nazareth,et al.  Introduction to derivative-free optimization , 2010, Math. Comput..

[49]  L. Willingale,et al.  A new frontier in laboratory physics: magnetized electron–positron plasmas , 2020, Journal of Plasma Physics.

[50]  A. Boozer What is a stellarator , 1998 .