A simple geometrically exact finite element for thin shells—Part 1: statics

[1]  P. Krysl,et al.  Benchmarking Computational Shell Models , 2022, Archives of Computational Methods in Engineering.

[2]  P. Krysl Robust flat‐facet triangular shell finite element , 2022, International Journal for Numerical Methods in Engineering.

[3]  P. Pimenta,et al.  On the simultaneous use of simple geometrically exact shear-rigid rod and shell finite elements , 2021, Computational Mechanics.

[4]  F. Gruttmann,et al.  An improved quadrilateral shell element based on the Hu–Washizu functional , 2020, Adv. Model. Simul. Eng. Sci..

[5]  P. Pimenta,et al.  A simple finite element for the geometrically exact analysis of Bernoulli–Euler rods , 2020 .

[6]  B. Brank,et al.  Hybrid-mixed shell quadrilateral that allows for large solution steps and is low-sensitive to mesh distortion , 2019, Computational Mechanics.

[7]  Phill-Seung Lee,et al.  Performance of the MITC3+ and MITC4+ shell elements in widely-used benchmark problems , 2017 .

[8]  A. Ugural Plates and Shells: Theory and Analysis, Fourth Edition , 2017 .

[9]  Paulo M. Pimenta,et al.  A simple triangular finite element for nonlinear thin shells: statics, dynamics and anisotropy , 2017 .

[10]  Peter Wriggers,et al.  A novel mixed finite element for finite anisotropic elasticity; the SKA-element Simplified Kinematics for Anisotropy , 2016 .

[11]  Peter Wriggers,et al.  Automation of Finite Element Methods , 2016 .

[12]  P. Pimenta,et al.  Generalization of the C1 TUBA plate finite elements to the geometrically exact Kirchhoff-Love shell model , 2015 .

[13]  P. Pimenta,et al.  On the boundary conditions of the geometrically nonlinear Kirchhoff–Love shell theory , 2014 .

[14]  P. Wriggers,et al.  An exact conserving algorithm for nonlinear dynamics with rotational DOFs and general hyperelasticity. Part 2: shells , 2011 .

[15]  E. Campello,et al.  Shell curvature as an initial deformation: A geometrically exact finite element approach , 2009 .

[16]  J. Reddy Theory and Analysis of Elastic Plates and Shells , 2006 .

[17]  Werner Wagner,et al.  A robust non‐linear mixed hybrid quadrilateral shell element , 2005 .

[18]  P. Wriggers,et al.  A fully nonlinear multi-parameter shell model with thickness variation and a triangular shell finite element , 2004 .

[19]  Peter Wriggers,et al.  A triangular finite shell element based on a fully nonlinear shell formulation , 2003 .

[20]  E. Ventsel,et al.  Thin Plates and Shells: Theory: Analysis, and Applications , 2001 .

[21]  A. Ibrahimbegovic,et al.  Stress resultant geometrically nonlinear shell theory with drilling rotations—Part II. Computational aspects , 1994 .

[22]  Peter Wriggers,et al.  Thin shells with finite rotations formulated in biot stresses : theory and finite element formulation , 1993 .

[23]  C. Truesdell,et al.  The Non-Linear Field Theories Of Mechanics , 1992 .

[24]  E. Ramm,et al.  Shell theory versus degeneration—a comparison in large rotation finite element analysis , 1992 .

[25]  Yavuz Başar,et al.  Finite-rotation shell elements for the analysis of finite-rotation shell problems , 1992 .

[26]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part III: computational aspects of the nonlinear theory , 1990 .

[27]  J. C. Simo,et al.  On stress resultant geometrically exact shell model. Part I: formulation and optimal parametrization , 1989 .

[28]  P. Pimenta,et al.  A simple fully nonlinear Kirchhoff-Love shell finite element , 2020, Latin American Journal of Solids and Structures.

[29]  Jörg Schröder,et al.  Poly-, quasi- and rank-one convexity in applied mechanics , 2010 .

[30]  P. Wriggers,et al.  An exact conserving algorithm for nonlinear dynamics with rotational DOFs and general hyperelasticity. Part 1: Rods , 2008 .

[31]  F. Gruttmann,et al.  Structural analysis of composite laminates using a mixed hybrid shell element , 2006 .

[32]  N. F. Knight,et al.  Raasch Challenge for Shell Elements , 1997 .