Classification of savanna tree species, in the Greater Kruger National Park region, by integrating hyperspectral and LiDAR data in a Random Forest data mining environment

[1]  Russell Main,et al.  Impact of communal land use and conservation on woody vegetation structure in the Lowveld savannas of South Africa , 2011 .

[2]  Onisimo Mutanga,et al.  Modeling the Potential Distribution of Pine Forests Susceptible to Sirex Noctilio Infestations in Mpumalanga, South Africa , 2010, Trans. GIS.

[3]  Gregory Asner,et al.  Improving Discrimination of Savanna Tree Species Through a Multiple-Endmember Spectral Angle Mapper Approach: Canopy-Level Analysis , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Kinya Okada,et al.  Tree species discrimination using continuum removed airborne hyperspectral data , 2009, 2009 First Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing.

[5]  Moses Azong Cho,et al.  Spectral variability within species and its effects on Savanna tree species discrimination , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[6]  Susan L. Ustin,et al.  Identification of invasive vegetation using hyperspectral remote sensing in the California Delta ecosystem , 2008 .

[7]  J. Carreiras,et al.  Advances in forest characterisation, mapping and monitoring through integration of LiDAR and other remote sensing datasets , 2008 .

[8]  Roberta E. Martin,et al.  Invasive species detection in Hawaiian rainforests using airborne imaging spectroscopy and LiDAR. , 2008 .

[9]  Andrew K. Skidmore,et al.  Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression , 2007, Int. J. Appl. Earth Obs. Geoinformation.

[10]  E. Bork,et al.  Integrating LIDAR data and multispectral imagery for enhanced classification of rangeland vegetation: A meta analysis , 2007 .

[11]  K. Wiegand,et al.  The rhythm of savanna patch dynamics , 2007 .

[12]  J. Clevers,et al.  Classification of floodplain vegetation by data fusion of spectral (CASI) and LiDAR data , 2007 .

[13]  T. Yingchun,et al.  Mangrove Type Classification using Airborne Hyperspectral Images at Futian Reservation, Shenzhen, China , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[14]  A. Prasad,et al.  Newer Classification and Regression Tree Techniques: Bagging and Random Forests for Ecological Prediction , 2006, Ecosystems.

[15]  Rick L. Lawrence,et al.  Mapping invasive plants using hyperspectral imagery and Breiman Cutler classifications (RandomForest) , 2006 .

[16]  Ross A. Hill,et al.  Mapping woodland species composition and structure using airborne spectral and LiDAR data , 2005 .

[17]  R. Main,et al.  Estimating the potential role of commercial over‐harvesting in resource viability: a case study of five useful tree species in South Africa , 2005 .

[18]  Chein-I. Chang,et al.  New Hyperspectral Discrimination Measure for Spectral Characterization , 2004 .

[19]  Nirmal Keshava,et al.  Angle-based band selection for material identification in hyperspectral processing , 2003, SPIE Defense + Commercial Sensing.

[20]  A. Gitelson,et al.  Assessing Carotenoid Content in Plant Leaves with Reflectance Spectroscopy¶ , 2002, Photochemistry and photobiology.

[21]  Bing Zhang,et al.  Hyperspectral remote sensing technology and applications in China , 2001 .

[22]  Charlie M. Shackleton,et al.  Comparison of plant diversity in protected and communal lands in the Bushbuckridge lowveld savanna, South Africa , 2000 .

[23]  Vasileios Hatzivassiloglou,et al.  Translating Collocations for Bilingual Lexicons: A Statistical Approach , 1996, CL.

[24]  Jean Carletta,et al.  Assessing Agreement on Classification Tasks: The Kappa Statistic , 1996, CL.

[25]  A. Gitelson,et al.  Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation , 1994 .

[26]  C. Field,et al.  A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency , 1992 .

[27]  Brian G. Lees,et al.  Decision-tree and rule-induction approach to integration of remotely sensed and GIS data in mapping vegetation in disturbed or hilly environments , 1991 .

[28]  Russell G. Congalton,et al.  A review of assessing the accuracy of classifications of remotely sensed data , 1991 .

[29]  R. Ben-Shahar Abundance of trees and grasses in a woodland savanna in relation to environmental factors , 1991 .

[30]  Emilie B. Grossmann,et al.  Mapping ecological systems with a random forest model: tradeoffs between errors and bias , 2010 .

[31]  Sooyoung Kim,et al.  Individual tree species identification using LIDAR-derived crown structures and intensity data , 2008 .

[32]  I. Sobhan,et al.  Species discrimination from a hyperspectral perspective , 2007 .

[33]  M. Schaepman,et al.  Regional mapping of plant functional types in river floodplain ecosystems using airborne imaging spectroscopy data , 2007 .

[34]  M. Cho,et al.  Mapping shrub and tree species richness from hyperspectral imagery using a matched filtering unmixing technique , 2007 .

[35]  Roberta E. Martin,et al.  Carnegie Airborne Observatory: in-flight fusion of hyperspectral imaging and waveform light detection and ranging for three-dimensional studies of ecosystems , 2007 .

[36]  F. Meer The effectiveness of spectral similarity measures for the analysis of hyperspectral imagery , 2006 .

[37]  Onisimo Mutanga,et al.  Continuum - removed absorption features estimate tropical savanna grass quality in situ , 2003 .

[38]  Cesare Furlanello,et al.  GIS and the Random Forest Predictor: Integration in R for Tick-Borne Disease Risk Assessment , 2003 .

[39]  M. Swilling,et al.  Johannesburg, South Africa , 1999 .

[40]  R. H. Westfall,et al.  Biomes of Southern Africa: An objective categorization , 1994 .

[41]  J. A. Schell,et al.  Monitoring vegetation systems in the great plains with ERTS , 1973 .