Hamiltonicity of random subgraphs of the hypercube

We study Hamiltonicity in random subgraphs of the hypercube $\mathcal{Q}^n$. Our first main theorem is an optimal hitting time result. Consider the random process which includes the edges of $\mathcal{Q}^n$ according to a uniformly chosen random ordering. Then, with high probability, as soon as the graph produced by this process has minimum degree $2k$, it contains $k$ edge-disjoint Hamilton cycles, for any fixed $k\in\mathbb{N}$. Secondly, we obtain a perturbation result: if $H\subseteq\mathcal{Q}^n$ satisfies $\delta(H)\geq\alpha n$ with $\alpha>0$ fixed and we consider a random binomial subgraph $\mathcal{Q}^n_p$ of $\mathcal{Q}^n$ with $p\in(0,1]$ fixed, then with high probability $H\cup\mathcal{Q}^n_p$ contains $k$ edge-disjoint Hamilton cycles, for any fixed $k\in\mathbb{N}$. In particular, both results resolve a long standing conjecture, posed e.g. by Bollobas, that the threshold probability for Hamiltonicity in the random binomial subgraph of the hypercube equals $1/2$. Our techniques also show that, with high probability, for all fixed $p\in(0,1]$ the graph $\mathcal{Q}^n_p$ contains an almost spanning cycle. Our methods involve branching processes, the Rodl nibble, and absorption.

[1]  Petr Gregor,et al.  Partitions of Faulty Hypercubes into Paths with Prescribed Endvertices , 2008, SIAM J. Discret. Math..

[2]  Daniela Kühn,et al.  Edge‐disjoint Hamilton cycles in random graphs , 2011, Random Struct. Algorithms.

[3]  Julia Böttcher,et al.  EMBEDDING SPANNING BOUNDED DEGREE GRAPHS IN RANDOMLY PERTURBED GRAPHS , 2018 .

[4]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[5]  Alan Frieze,et al.  Random Structures and Algorithms , 2014 .

[6]  József Balogh,et al.  Tilings in Randomly Perturbed Dense Graphs , 2017, Combinatorics, Probability and Computing.

[7]  Remco van der Hofstad,et al.  Hypercube percolation , 2012, 1201.3953.

[8]  M. P. Alfaro,et al.  Solution of a problem of P. Tura´n on zeros of orthogonal polynomials on the unit circle , 1988 .

[9]  A. Frieze ON MATCHINGS AND HAMILTON CYCLES IN RANDOM GRAPHS , 1988 .

[10]  Martin Dyer,et al.  On the Strength of Connectivity of Random Subgraphs of the n-Cube , 1987 .

[11]  E T. Leighton,et al.  Introduction to parallel algorithms and architectures , 1991 .

[12]  Alan Frieze,et al.  Hamilton Cycles in Random Graphs: a bibliography , 2019, 1901.07139.

[13]  Donald E. Knuth,et al.  The Art of Computer Programming, Volume 4, Fascicle 2: Generating All Tuples and Permutations (Art of Computer Programming) , 2005 .

[14]  Donald E. Knuth,et al.  The Art of Computer Programming: Volume IV: Fascicle 2: Generating All Tuples and Permutations , 2005 .

[15]  Tony Johansson,et al.  On Hamilton cycles in Erdős‐Rényi subgraphs of large graphs , 2020, Random Struct. Algorithms.

[16]  Arnold L. Rosenberg,et al.  Efficient Embeddings of Trees in Hypercubes* , 2022 .

[17]  Béla Bollobás The Evolution of the Cube , 1983 .

[18]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[19]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[20]  P A Fotinakes,et al.  Take a walk , 1995, The Healthcare Forum journal.

[21]  Colin McDiarmid,et al.  The component structure of dense random subgraphs of the hypercube , 2021, Random Struct. Algorithms.

[22]  Jin-Yi Cai,et al.  Take a walk, grow a tree , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[23]  W. Hoeffding Probability Inequalities for sums of Bounded Random Variables , 1963 .

[24]  H. Poincaré,et al.  Percolation ? , 1982 .

[25]  Václav Koubek,et al.  Spanning multi-paths in hypercubes , 2007, Discret. Math..

[26]  Tom Bohman,et al.  How many random edges make a dense graph hamiltonian? , 2003, Random Struct. Algorithms.

[27]  Yoshiharu Kohayakawa,et al.  Universality for bounded degree spanning trees in randomly perturbed graphs , 2018, Random Struct. Algorithms.

[28]  Mee Yee Chan,et al.  On the Existence of Hamiltonian Circuits in Faulty Hypercubes , 1991, SIAM J. Discret. Math..

[29]  Béla Bollobás Complete Matchings in Random Subgraphs on the Cube , 1990, Random Struct. Algorithms.

[30]  L. Pósa,et al.  Hamiltonian circuits in random graphs , 1976, Discret. Math..

[31]  Kazuoki Azuma WEIGHTED SUMS OF CERTAIN DEPENDENT RANDOM VARIABLES , 1967 .

[32]  Michael Krivelevich,et al.  Hitting Time of Edge Disjoint Hamilton Cycles in Random Subgraph Processes on Dense Base Graphs , 2019, SIAM J. Discret. Math..

[33]  Yoshiharu Kohayakawa,et al.  The Evaluation of Random Subgraphs of the Cube , 1992, Random Struct. Algorithms.

[34]  James Allen Fill,et al.  PERCOLATION, FIRST-PASSAGE PERCOLATION, AND COVERING TIMES FOR RICHARDSON'S MODEL ON THE n-CUBE (Short title: PERCOLATION ON THE CUBE) , 1993 .

[35]  Joel H. Spencer,et al.  Random Subgraphs Of Finite Graphs: III. The Phase Transition For The n-Cube , 2006, Comb..

[36]  Petr Gregor,et al.  Path partitions of hypercubes , 2008, Inf. Process. Lett..

[37]  Xie-Bin Chen,et al.  Paired many-to-many disjoint path covers of the hypercubes , 2013, Inf. Sci..

[38]  Jeong Han Kim,et al.  Nearly perfect matchings in regular simple hypergraphs , 1997 .

[39]  J. Komlos,et al.  First Occurrence of Hamilton Cycles in Random Graphs , 1985 .

[40]  J. Spencer,et al.  EVOLUTION OF THE n-CUBE , 1979 .

[41]  Benny Sudakov,et al.  Bounded-Degree Spanning Trees in Randomly Perturbed Graphs , 2015, SIAM J. Discret. Math..

[42]  Carla Savage,et al.  A Survey of Combinatorial Gray Codes , 1997, SIAM Rev..

[43]  B. Bollobás,et al.  Random Graphs of Small Order , 1985 .

[44]  Daniela Kühn,et al.  Hamilton decompositions of regular expanders: Applications , 2012, J. Comb. Theory, Ser. B.

[45]  J. Rassias Solution of a problem of Ulam , 1989 .

[46]  Y. Kohayakawa,et al.  The length of random subsets of Boolean lattices , 2000, Random Struct. Algorithms.

[47]  János Komlós,et al.  Limit distribution for the existence of Hamiltonian cycles in a random graph , 2006, Discret. Math..

[48]  Wojciech Samotij,et al.  Optimal Packings of Hamilton Cycles in Sparse Random Graphs , 2011, SIAM J. Discret. Math..

[49]  Petr Gregor,et al.  Generalized Gray codes with prescribed ends , 2016, Theor. Comput. Sci..

[50]  D. Kuhn,et al.  Hamilton cycles in graphs and hypergraphs: an extremal perspective , 2014, 1402.4268.

[51]  Samuel Mohr,et al.  Random Perturbation of Sparse Graphs , 2020, Electron. J. Comb..

[52]  Benny Sudakov,et al.  Robust Hamiltonicity of Dirac graphs , 2012, 1201.2202.