Efficient parallel implementation of Ewald summation in molecular dynamics simulations on multi-core platforms

Abstract We present a multi-step computation method to implement the Ewald summation for long-range electrostatic interactions in molecular dynamic simulations on a multi-core machine. Our methodology is based on the OpenMP programming model. It partitions computations of real-space summation among threads so that the global force of a single particle cannot be modified by more than one thread simultaneously. It requires neither a private copy of the force array for each thread nor an inspector at runtime. Compared with some other methods that can parallelise reduction operations on a force-array, our method achieves relatively higher speedups and lower L2 cache miss and bus utilisation ratios.

[1]  Klaus Schulten,et al.  Multilevel summation of electrostatic potentials using graphics processing units , 2009, Parallel Comput..

[2]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[3]  J. Perram,et al.  Simulation of electrostatic systems in periodic boundary conditions. I. Lattice sums and dielectric constants , 1980, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[4]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  Vijay S. Pande,et al.  Accelerating molecular dynamic simulation on graphics processing units , 2009, J. Comput. Chem..

[8]  Stefan Brode,et al.  An optimized MD program for the vector computer cyber 205 , 1986 .

[9]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[10]  Rajeev Thakur,et al.  Optimization of Collective Communication Operations in MPICH , 2005, Int. J. High Perform. Comput. Appl..

[11]  William Smith,et al.  A replicated data molecular dynamics strategy for the parallel Ewald sum , 1992 .

[12]  Rajiv K. Kalia,et al.  Molecular dynamics simu-lations of Coulombic systems on ditributed-memory MIMD machines , 1993 .

[13]  D. C. Rapaport,et al.  The Art of Molecular Dynamics Simulation , 1997 .

[14]  Maurice Herlihy,et al.  Transactional Memory: Architectural Support For Lock-free Data Structures , 1993, Proceedings of the 20th Annual International Symposium on Computer Architecture.

[15]  Raphaël Couturier,et al.  Parallel molecular dynamics using OPENMP on a shared memory machine , 2000 .

[16]  Rajiv K. Kalia,et al.  Metascalable molecular dynamics simulation of nano-mechano-chemistry , 2008 .

[17]  Stefan Goedecker Optimization and parallelization of a force field for silicon using OpenMP ? ? This program can be d , 2002 .

[18]  Monica S. Lam,et al.  Maximizing Multiprocessor Performance with the SUIF Compiler , 1996, Digit. Tech. J..

[19]  Klaus Schulten,et al.  Accelerating Molecular Modeling Applications with GPU Computing , 2009 .

[20]  Joshua A. Anderson,et al.  General purpose molecular dynamics simulations fully implemented on graphics processing units , 2008, J. Comput. Phys..