The Complexity of Drawing Graphs on Few Lines and Few Planes

We investigate the problem of drawing graphs in 2D and 3D such that their edges (or only their vertices) can be covered by few lines or planes. We insist on straight-line edges and crossing-free drawings. This problem has many connections to other challenging graph-drawing problems such as small-area or small-volume drawings, layered or track drawings, and drawing graphs with low visual complexity. While some facts about our problem are implicit in previous work, this is the first treatment of the problem in its full generality. Our contribution is as follows. We show lower and upper bounds for the numbers of lines and planes needed for covering drawings of graphs in certain graph classes. In some cases our bounds are asymptotically tight; in some cases we are able to determine exact values. We relate our parameters to standard combinatorial characteristics of graphs (such as the chromatic number, treewidth, maximum degree, or arboricity) and to parameters that have been studied in graph drawing (such as the track number or the number of segments appearing in a drawing). We pay special attention to planar graphs. For example, we show that there are planar graphs that can be drawn in 3-space on a lot fewer lines than in the plane.

[1]  Vida Dujmovic Graph layouts via layered separators , 2015, J. Comb. Theory, Ser. B.

[2]  Stefan Felsner,et al.  Geometric Graphs and Arrangements - Some Chapters from Combinatorial Geometry , 2004, Advanced lectures in mathematics.

[3]  David Zuckerman,et al.  Electronic Colloquium on Computational Complexity, Report No. 100 (2005) Linear Degree Extractors and the Inapproximability of MAX CLIQUE and CHROMATIC NUMBER , 2005 .

[4]  David R. Wood,et al.  Track Layouts of Graphs , 2004, Discret. Math. Theor. Comput. Sci..

[5]  Giuseppe Di Battista,et al.  Small Area Drawings of Outerplanar Graphs , 2007, Algorithmica.

[6]  M. Kreĭn,et al.  On extreme points of regular convex sets , 1940 .

[7]  C. R. Subramanian,et al.  Girth and treewidth , 2005, J. Comb. Theory, Ser. B.

[8]  Hansjoachim Walther,et al.  Shortness Exponents of Families of Graphs , 1973, J. Comb. Theory, Ser. A.

[9]  David Eppstein,et al.  Journal of Graph Algorithms and Applications Drawing Arrangement Graphs in Small Grids, or How to Play Planarity , 2022 .

[10]  Debajyoti Mondal,et al.  Minimum-segment convex drawings of 3-connected cubic plane graphs , 2013, J. Comb. Optim..

[11]  Victor W. Marek,et al.  Book review: Combinatorics, Set Systems, Hypergraphs, Families of Vectors and Combinatorial Probability by B. Bollobas (Cambridge University Press) , 1987, SGAR.

[12]  David R. Wood,et al.  Graph drawings with few slopes , 2007, Comput. Geom..

[13]  H. Hanani The Existence and Construction of Balanced Incomplete Block Designs , 1961 .

[14]  Fabrizio Frati,et al.  Lower Bounds on the Area Requirements of Series-Parallel Graphs , 2010, Discret. Math. Theor. Comput. Sci..

[15]  Matthew Suderman,et al.  Pathwidth And Layered Drawings Of Trees , 2004, Int. J. Comput. Geom. Appl..

[16]  P.,et al.  Properties of Arrangement Graphs , 2007 .

[17]  János Pach,et al.  Three-dimensional Grid Drawings of Graphs , 1997, GD.

[18]  André Raspaud,et al.  On the vertex-arboricity of planar graphs , 2008, Eur. J. Comb..

[19]  Kyung-Yong Chwa,et al.  Area-efficient algorithms for straight-line tree drawings , 2000, Comput. Geom..

[20]  G. Chartrand,et al.  The Point‐Arboricity of Planar Graphs , 1969 .

[21]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part III: Quantifier Elimination , 1992, J. Symb. Comput..

[22]  Jianfang Wang On point-linear arboricity of planar graphs , 1988, Discret. Math..

[23]  André Schulz,et al.  Drawing Graphs with Few Arcs , 2013, J. Graph Algorithms Appl..

[24]  Peter W. Shor,et al.  Stretchability of Pseudolines is NP-Hard , 1990, Applied Geometry And Discrete Mathematics.

[25]  Wouter Meulemans,et al.  Drawing Planar Graphs with Few Geometric Primitives , 2017, WG.

[26]  Jan Kratochvíl,et al.  The Planar Slope Number of Planar Partial 3-Trees of Bounded Degree , 2013, Graphs Comb..

[27]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part II: The General Decision Problem. Preliminaries for Quantifier Elimination , 1992, J. Symb. Comput..

[28]  S. L. Hakimi,et al.  A Note on the Vertex Arboricity of a Graph , 1989, SIAM J. Discret. Math..

[29]  János Pach,et al.  Untangling a Polygon , 2001, Graph Drawing.

[30]  Stephane Durocher,et al.  A Note on Minimum-Segment Drawings of Planar Graphs , 2011, CCCG.

[31]  Bud Mishra,et al.  Computational Real Algebraic Geometry , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[32]  B. Bollobás Combinatorics: Set Systems, Hypergraphs, Families of Vectors and Combinatorial Probability , 1986 .

[33]  Marcus Schaefer,et al.  Fixed Points, Nash Equilibria, and the Existential Theory of the Reals , 2017, Theory of Computing Systems.

[34]  Jean Cardinal,et al.  Computational Geometry Column 62 , 2015, SIGACT News.

[35]  Makoto Matsumoto,et al.  Bounds for the vertex linear arboricity , 1990, J. Graph Theory.

[36]  Frank Harary,et al.  Graph Theory , 2016 .

[37]  Gabriele E. Danninger-Uchida Krein-Milman Theorem , 2009, Encyclopedia of Optimization.

[38]  Wouter Meulemans,et al.  Drawing Planar Cubic 3-Connected Graphs with Few Segments: Algorithms and Experiments , 2015, GD.

[39]  J. Geelen ON HOW TO DRAW A GRAPH , 2012 .

[40]  David Eppstein,et al.  Track Layouts, Layered Path Decompositions, and Leveled Planarity , 2018, Algorithmica.

[41]  Vida Dujmovic,et al.  Three-Dimensional Drawings , 2013, Handbook of Graph Drawing and Visualization.

[42]  Wayne Goddard,et al.  Acyclic colorings of planar graphs , 1991, Discret. Math..

[43]  Therese C. Biedl,et al.  Small Drawings of Outerplanar Graphs, Series-Parallel Graphs, and Other Planar Graphs , 2011, Discret. Comput. Geom..

[44]  Colin D. Reid,et al.  Steiner systems S(2, 4,v) - a survey , 2010 .

[45]  Daniel Bienstock,et al.  Some provably hard crossing number problems , 1990, SCG '90.

[46]  Ross J. Kang,et al.  Sphere and Dot Product Representations of Graphs , 2012, Discrete & Computational Geometry.

[47]  János Pach,et al.  Small sets supporting fary embeddings of planar graphs , 1988, STOC '88.

[48]  David R. Wood,et al.  Three-Dimensional Grid Drawings with Sub-quadratic Volume , 2003, GD.

[49]  Vida Dujmovic,et al.  Drawing Planar Graphs with Many Collinear Vertices , 2016, GD.

[50]  Therese C. Biedl,et al.  Height-Preserving Transformations of Planar Graph Drawings , 2014, GD.

[51]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I: Introduction. Preliminaries. The Geometry of Semi-Algebraic Sets. The Decision Problem for the Existential Theory of the Reals , 1992, J. Symb. Comput..

[52]  David R. Wood Three-Dimensional Graph Drawing , 2016, Encyclopedia of Algorithms.

[53]  Izak Broere,et al.  Generalized colorings of outerplanar and planar graphs , 1985 .

[54]  Carsten Thomassen,et al.  Graphs on Surfaces , 2001, Johns Hopkins series in the mathematical sciences.

[55]  Shin-Ichi Nakano,et al.  Grid Drawings of 4-Connected Plane Graphs , 2001, Discret. Comput. Geom..

[56]  Udo Hoffmann,et al.  On the Complexity of the Planar Slope Number Problem , 2017, J. Graph Algorithms Appl..

[57]  Xavier Goaoc,et al.  Untangling a Planar Graph , 2009, Discret. Comput. Geom..

[58]  Pat Morin,et al.  Layout of Graphs with Bounded Tree-Width , 2004, SIAM J. Comput..

[59]  Marcel Berger,et al.  Points and lines in the plane , 2010 .

[60]  Lenwood S. Heath,et al.  Laying out Graphs Using Queues , 1992, SIAM J. Comput..

[61]  Leslie G. Valiant,et al.  Universality considerations in VLSI circuits , 1981, IEEE Transactions on Computers.

[62]  Timothy M. Chan Tree Drawings Revisited , 2018, Symposium on Computational Geometry.

[63]  Oleg Verbitsky,et al.  On Collinear Sets in Straight-Line Drawings , 2008, WG.

[64]  F. Harary COVERING AND PACKING IN GRAPHS, I. , 1970 .

[65]  Jin Akiyama,et al.  Path chromatic numbers of graphs , 1989, J. Graph Theory.

[66]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .

[67]  János Pach,et al.  How to draw a planar graph on a grid , 1990, Comb..

[68]  Stefan Felsner,et al.  Straight-Line Drawings on Restricted Integer Grids in Two and Three Dimensions , 2001, J. Graph Algorithms Appl..

[69]  Wouter Meulemans,et al.  Experimental Analysis of the Accessibility of Drawings with Few Segments , 2017, GD.

[70]  Prosenjit Bose,et al.  A Polynomial Bound for Untangling Geometric Planar Graphs , 2009, Discret. Comput. Geom..

[71]  Walter Schnyder,et al.  Embedding planar graphs on the grid , 1990, SODA '90.

[72]  Jean Cardinal,et al.  Recognition and Complexity of Point Visibility Graphs , 2015, Discret. Comput. Geom..

[73]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science , 1991 .

[74]  John F. Canny,et al.  Some algebraic and geometric computations in PSPACE , 1988, STOC '88.

[75]  Alexander Wolff,et al.  Drawing Graphs on Few Circles and Few Spheres , 2017, CALDAM.

[76]  David Eppstein,et al.  Drawings of planar graphs with few slopes and segments , 2007, Comput. Geom..

[77]  F. Harary,et al.  Covering and packing in graphs. III: Cyclic and acyclic invariants , 1980 .

[78]  David R. Wood Bounded-Degree Graphs have Arbitrarily Large Queue-Number , 2008, Discret. Math. Theor. Comput. Sci..

[79]  Alastair Farrugia Vertex-Partitioning into Fixed Additive Induced-Hereditary Properties is NP-hard , 2004, Electron. J. Comb..

[80]  Therese C. Biedl,et al.  Drawing planar bipartite graphs with small area , 2005, CCCG.

[81]  Mihir Bellare,et al.  The Complexity of Decision Versus Search , 1991, SIAM J. Comput..

[82]  Jirí Matousek,et al.  Bounded-Degree Graphs have Arbitrarily Large Geometric Thickness , 2006, Electron. J. Comb..

[83]  Emilio Di Giacomo,et al.  Computing straight-line 3D grid drawings of graphs in linear volume , 2005, Comput. Geom..

[84]  Xin He,et al.  Parallel Complexity of Partitioning a Planar Graph Into Vertex-induced Forests , 1996, Discret. Appl. Math..

[85]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[86]  J. Kratochvil,et al.  Intersection Graphs of Segments , 1994, J. Comb. Theory, Ser. B.

[87]  N. Mnev The universality theorems on the classification problem of configuration varieties and convex polytopes varieties , 1988 .

[88]  R. L. Brooks On Colouring the Nodes of a Network , 1941 .

[89]  Robert E. Jamison,et al.  Few slopes without collinearity , 1986, Discret. Math..

[90]  K. S. Poh On the linear vertex-arboricity of a planar graph , 1990, J. Graph Theory.

[91]  Alexandr V. Kostochka,et al.  On a lower bound for the isoperimetric number of cubic graphs , 1993 .

[92]  Giuseppe Di Battista,et al.  A Note on Optimal Area Algorithms for Upward Drawings of Binary Trees , 1992, Comput. Geom..

[93]  Günter Rote,et al.  Minimum-weight triangulation is NP-hard , 2006, JACM.

[94]  János Pach,et al.  Bounded-Degree Graphs can have Arbitrarily Large Slope Numbers , 2006, Electron. J. Comb..

[95]  János Pach,et al.  On the Queue Number of Planar Graphs , 2013, SIAM J. Comput..

[96]  Marcus Schaefer,et al.  Complexity of Some Geometric and Topological Problems , 2009, GD.

[97]  Timothy M. Chan,et al.  Optimizing area and aspect ration in straight-line orthogonal tree drawings , 2002, Comput. Geom..

[98]  Jan Kratochvíl,et al.  Noncrossing Subgraphs in Topological Layouts , 1991, SIAM J. Discret. Math..