SPRITE : A Data-Driven Response Model For Multiple Choice Questions
暂无分享,去创建一个
Richard G. Baraniuk | Christoph Studer | Andrew S. Lan | Andrew E. Waters | Ryan Ning | Richard Baraniuk | Christoph Studer | Ryan Ning
[1] Peter Brusilovsky,et al. Adaptive and Intelligent Web-based Educational Systems , 2003, Int. J. Artif. Intell. Educ..
[2] D. Thissen,et al. Multiple-Choice Models: The Distractors Are also Part of the Item. , 1989 .
[3] Hagai Attias,et al. Inferring Parameters and Structure of Latent Variable Models by Variational Bayes , 1999, UAI.
[4] J. Ware,et al. Practical implications of item response theory and computerized adaptive testing: a brief summary of ongoing studies of widely used headache impact scales. , 2000, Medical care.
[5] Walter R. Gilks,et al. Adaptive rejection metropolis sampling , 1995 .
[6] Kenneth R. Koedinger,et al. Learning Factors Transfer Analysis: Using Learning Curve Analysis to Automatically Generate Domain Models , 2009, EDM.
[7] Richard G. Baraniuk,et al. Tag-Aware Ordinal Sparse Factor Analysis for Learning and Content Analytics , 2014, EDM.
[8] Anton Beguin,et al. Using Classical Test Theory in Combination with Item Response Theory , 2003 .
[9] Jim Albert,et al. Ordinal Data Modeling , 2000 .
[10] Willem J. van der Linden,et al. Bayesian item selection criteria for adaptive testing , 1998 .
[11] D. Rubin,et al. Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .
[12] A. Béguin,et al. MCMC estimation and some model-fit analysis of multidimensional IRT models , 2001 .
[13] Li Cai,et al. Metropolis-Hastings Robbins-Monro Algorithm for Confirmatory Item Factor Analysis , 2010 .
[14] Stephen P. Boyd,et al. Compressed Sensing With Quantized Measurements , 2010, IEEE Signal Processing Letters.
[15] E. Muraki. A GENERALIZED PARTIAL CREDIT MODEL: APPLICATION OF AN EM ALGORITHM , 1992 .
[16] Jimmy de la Torre,et al. A Cognitive Diagnosis Model for Cognitively Based Multiple-Choice Options. , 2009 .
[17] Tiffany Barnes,et al. The Q-matrix Method: Mining Student Response Data for Knowledge , 2005 .
[18] Kikumi K. Tatsuoka,et al. A Probabilistic Model for Diagnosing Misconceptions By The Pattern Classification Approach , 1985 .
[19] Pablo A. Parrilo,et al. Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..
[20] F. Samejima. Graded Response Model , 1997 .
[21] Richard G. Baraniuk,et al. Test-size Reduction for Concept Estimation , 2013, EDM.
[22] F. Lord. Applications of Item Response Theory To Practical Testing Problems , 1980 .
[23] John R. Anderson,et al. Knowledge tracing: Modeling the acquisition of procedural knowledge , 2005, User Modeling and User-Adapted Interaction.
[24] L. Carin,et al. Nonparametric Bayesian matrix completion , 2010, 2010 IEEE Sensor Array and Multichannel Signal Processing Workshop.
[25] Trevor Hastie,et al. The Elements of Statistical Learning , 2001 .
[26] Cornelis A.W. Glas,et al. Computerized adaptive testing : theory and practice , 2000 .
[27] Kurt VanLehn,et al. The Andes Physics Tutoring System: Lessons Learned , 2005, Int. J. Artif. Intell. Educ..
[28] David B. Dunson,et al. Bayesian Data Analysis , 2010 .
[29] Joachim M. Buhmann,et al. Cluster analysis of heterogeneous rank data , 2007, ICML '07.
[30] Georg Rasch,et al. Probabilistic Models for Some Intelligence and Attainment Tests , 1981, The SAGE Encyclopedia of Research Design.
[31] Michael L. Nering,et al. Handbook of Polytomous Item Response Theory Models , 2010 .
[32] G. Masters. A rasch model for partial credit scoring , 1982 .
[33] David Thissen,et al. A response model for multiple choice items , 1984 .
[34] Nasser M. Nasrabadi,et al. Pattern Recognition and Machine Learning , 2006, Technometrics.
[35] M. Reckase. Multidimensional Item Response Theory , 2009 .