A Requirement for Flk1 in Primitive and Definitive Hematopoiesis and Vasculogenesis

[1]  R. Quatrano Genomics , 1998, Plant Cell.

[2]  G. Keller,et al.  A common precursor for primitive erythropoiesis and definitive haematopoiesis , 1997, Nature.

[3]  Pamela F. Jones,et al.  Requisite Role of Angiopoietin-1, a Ligand for the TIE2 Receptor, during Embryonic Angiogenesis , 1996, Cell.

[4]  Pamela F. Jones,et al.  Isolation of Angiopoietin-1, a Ligand for the TIE2 Receptor, by Secretion-Trap Expression Cloning , 1996, Cell.

[5]  E. Dzierzak,et al.  Characterization of the first definitive hematopoietic stem cells in the AGM and liver of the mouse embryo. , 1996, Immunity.

[6]  J. Rossant,et al.  Cell autonomous functions of the receptor tyrosine kinase TIE in a late phase of angiogenic capillary growth and endothelial cell survival during murine development. , 1996, Development.

[7]  A. Medvinsky,et al.  Definitive Hematopoiesis Is Autonomously Initiated by the AGM Region , 1996, Cell.

[8]  A. Cumano,et al.  Lymphoid Potential, Probed before Circulation in Mouse, Is Restricted to Caudal Intraembryonic Splanchnopleura , 1996, Cell.

[9]  F. Alt,et al.  The T Cell Leukemia Oncoprotein SCL/tal-1 Is Essential for Development of All Hematopoietic Lineages , 1996, Cell.

[10]  J. Partanen,et al.  The Tie receptor tyrosine kinase is expressed by human hematopoietic progenitor cells and by a subset of megakaryocytic cells. , 1996, Blood.

[11]  V L Bautch,et al.  Blood island formation in attached cultures of murine embryonic stem cells , 1996, Developmental dynamics : an official publication of the American Association of Anatomists.

[12]  Y. Masuho,et al.  Predominant expression of a receptor tyrosine kinase, TIE, in hematopoietic stem cells and B cells , 1996 .

[13]  J. Rossant,et al.  The receptor tyrosine kinase TIE is required for integrity and survival of vascular endothelial cells. , 1995, The EMBO journal.

[14]  E. Dzierzak,et al.  Mouse embryonic hematopoiesis. , 1995, Trends in genetics : TIG.

[15]  P. Tam,et al.  The development of haematopoietic cells is biased in embryonic stem cell chimaeras. , 1995, Developmental biology.

[16]  Janet Rossant,et al.  Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice , 1995, Nature.

[17]  Thomas N. Sato,et al.  Distinct roles of the receptor tyrosine kinases Tie-1 and Tie-2 in blood vessel formation , 1995, Nature.

[18]  J. Rossant,et al.  Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium , 1995, Nature.

[19]  K. Alitalo,et al.  Vascularization of the mouse embryo: A study of flk‐1, tek, tie, and vascular endothelial growth factor expression during development , 1995, Developmental dynamics : an official publication of the American Association of Anatomists.

[20]  S. Orkin,et al.  Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL , 1995, Nature.

[21]  A. Cumano,et al.  Emergence of multipotent hemopoietic cells in the yolk sac and paraaortic splanchnopleura in mouse embryos, beginning at 8.5 days postcoitus. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[22]  M. Bucan,et al.  A 1.8-Mb YAC contig spanning three members of the receptor tyrosine kinase gene family (Pdgfra, Kit, and Flk1) on mouse chromosome 5. , 1995, Genomics.

[23]  M. Gertsenstein,et al.  Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. , 1994, Genes & development.

[24]  D. Le Paslier,et al.  A YAC contig spanning a cluster of human type III receptor protein tyrosine kinase genes (PDGFRA-KIT-KDR) in chromosome segment 4q12. , 1994, Genomics.

[25]  M. Evans,et al.  The Oncogenic Cysteine-rich LIM domain protein Rbtn2 is essential for erythroid development , 1994, Cell.

[26]  J. Strouboulis,et al.  Development of hematopoietic stem cell activity in the mouse embryo. , 1994, Immunity.

[27]  R. Auerbach,et al.  Identification and characterization of hematopoietic stem cells from the yolk sac of the early mouse embryo. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Thomas N. Sato,et al.  Tie-1 and tie-2 define another class of putative receptor tyrosine kinase genes expressed in early embryonic vascular system. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[29]  A. Iwama,et al.  Molecular cloning and characterization of mouse TIE and TEK receptor tyrosine kinase genes and their expression in hematopoietic stem cells. , 1993, Biochemical and biophysical research communications.

[30]  T. Quinn,et al.  Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[31]  A. Cumano,et al.  Differentiation and characterization of B-cell precursors detected in the yolk sac and embryo body of embryos beginning at the 10- to 12-somite stage. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[32]  J. García-Porrero,et al.  Para-aortic splanchnopleura from early mouse embryos contains B1a cell progenitors , 1993, Nature.

[33]  A. Müller,et al.  An early pre-liver intraembryonic source of CFU-S in the developing mouse , 1993, Nature.

[34]  J. Rossant,et al.  flk-1, an flt-related receptor tyrosine kinase is an early marker for endothelial cell precursors. , 1993, Development.

[35]  A. Ullrich,et al.  High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis , 1993, Cell.

[36]  S. Nishikawa,et al.  Expression and function of c-Kit in fetal hemopoietic progenitor cells: transition from the early c-Kit-independent to the late c-Kit-dependent wave of hemopoiesis in the murine embryo. , 1993, Development.

[37]  A. Joyner,et al.  Production of completely ES cell-derived fetuses. , 1993 .

[38]  A. Joyner,et al.  Production of targeted embryonic stem cell clones. , 1993 .

[39]  J. Rossant,et al.  tek, a novel tyrosine kinase gene located on mouse chromosome 4, is expressed in endothelial cells and their presumptive precursors. , 1992, Oncogene.

[40]  J. Seidman,et al.  Production of homozygous mutant ES cells with a single targeting construct , 1992, Molecular and cellular biology.

[41]  J. Partanen,et al.  A novel endothelial cell surface receptor tyrosine kinase with extracellular epidermal growth factor homology domains , 1992, Molecular and cellular biology.

[42]  G. Gill,et al.  Receptor tyrosine kinases , 1992, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[43]  H Ueno,et al.  The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. , 1992, Science.

[44]  A. Shah Vascular endothelium. , 1992, British journal of hospital medicine.

[45]  R. Auerbach,et al.  In vitro development of murine T cells from prethymic and preliver embryonic yolk sac hematopoietic stem cells. , 1991, Development.

[46]  N. Copeland,et al.  A receptor tyrosine kinase cDNA isolated from a population of enriched primitive hematopoietic cells and exhibiting close genetic linkage to c-kit. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[47]  H. Snodgrass,et al.  Hematopoietic development of embryonic stem cells in vitro: cytokine and receptor gene expression. , 1991, Genes & development.

[48]  G. Keller,et al.  Multiple hematopoietic lineages develop from embryonic stem (ES) cells in culture. , 1991, Development.

[49]  K. Davies,et al.  Molecular biology of the W and steel loci. , 1991 .

[50]  W. Risau Embryonic angiogenesis factors. , 1991, Pharmacology & therapeutics.

[51]  M. Shibuya,et al.  Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family. , 1990, Oncogene.

[52]  H. Karasuyama,et al.  Establishment of mouse cell lines which constitutively secrete large quantities of interleukin 2, 3, 4 or 5, using modified cDNA expression vectors , 1988, European journal of immunology.

[53]  C. Eaves,et al.  Properties of the earliest clonogenic hemopoietic precursors to appear in the developing murine yolk sac. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[54]  R Kemler,et al.  The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. , 1985, Journal of embryology and experimental morphology.

[55]  Y. Kitamura,et al.  Presence of mast cell precursors in the yolk sac of mice. , 1983, Developmental biology.

[56]  F. Dieterlen-Lièvre,et al.  Diffuse intraembryonic hemopoiesis in normal and chimeric avian development. , 1981, Developmental biology.

[57]  E. Russell Hereditary anemias of the mouse: a review for geneticists. , 1979, Advances in genetics.

[58]  A. Cordier,et al.  Murine yolk sac hematopoiesis studied with the diffusion chamber technique. , 1978, Experimental hematology.

[59]  M. Feldman,et al.  In vitro activation of the in vivo colony‐forming units of the mouse yolk sac , 1977, Journal of cellular physiology.

[60]  M. Moore,et al.  Ontogeny of the Haemopoietic System: Yolk Sac Origin of In Vivo and In Vitro Colony Forming Cells in the Developing Mouse Embryo * , 1970, British journal of haematology.

[61]  P. Murray The development in vitro of the blood of the early chick embryo , 1932 .

[62]  F. Sabin Studies on the origin of blood vessels and of red corpuscles as seen in the living blastoderm of the chick during the second day of incubation , 1920 .

[63]  ESTABLISHMENT MOUSE , 2022 .