Singular Value Computation and Subspace Clustering

OF DISSERTATION SINGULAR VALUE COMPUTATION AND SUBSPACE CLUSTERING In this dissertation we discuss two problems. In the first part, we consider the problem of computing a few extreme eigenvalues of a symmetric definite generalized eigenvalue problem or a few extreme singular values of a large and sparse matrix. The standard method of choice of computing a few extreme eigenvalues of a large symmetric matrix is the Lanczos or the implicitly restarted Lanczos method. These methods usually employ a shift-and-invert transformation to accelerate the speed of convergence, which is not practical for truly large problems. With this in mind, Golub and Ye proposes an inverse-free preconditioned Krylov subspace method, which uses preconditioning instead of shift-and-invert to accelerate the convergence. To compute several eigenvalues, Wielandt is used in a straightforward manner. However, the Wielandt deflation alters the structure of the problem and may cause some difficulties in certain applications such as the singular value computations. So we first propose to consider a deflation by restriction method for the inverse-free Krylov subspace method. We generalize the original convergence theory for the inverse-free preconditioned Krylov subspace method to justify this deflation scheme. We next extend the inverse-free Krylov subspace method with deflation by restriction to the singular value problem. We consider preconditioning based on robust incomplete factorization to accelerate the convergence. Numerical examples are provided to demonstrate efficiency and robustness of the new algorithm. In the second part of this thesis, we consider the so-called subspace clustering problem, which aims for extracting a multi-subspace structure from a collection of points lying in a high-dimensional space. Recently, methods based on self expressiveness property (SEP) such as Sparse Subspace Clustering and Low Rank Representations have been shown to enjoy superior performances than other methods. However, methods with SEP may result in representations that are not amenable to clustering through graph partitioning. We propose a method where the points are expressed in terms of an orthonormal basis. The orthonormal basis is optimally chosen in the sense that the representation of all points is sparsest. Numerical results are given to illustrate the effectiveness and efficiency of this method.

[1]  M. Benzi Preconditioning techniques for large linear systems: a survey , 2002 .

[2]  Iain S. Duff,et al.  A Class of Incomplete Orthogonal Factorization Methods. I: Methods and Theories , 1999 .

[3]  Na Li,et al.  MIQR: A Multilevel Incomplete QR Preconditioner for Large Sparse Least-Squares Problems , 2006, SIAM J. Matrix Anal. Appl..

[4]  Huan Liu,et al.  Subspace clustering for high dimensional data: a review , 2004, SKDD.

[5]  Lothar Reichel,et al.  IRBL: An Implicitly Restarted Block-Lanczos Method for Large-Scale Hermitian Eigenproblems , 2002, SIAM J. Sci. Comput..

[6]  S. Shankar Sastry,et al.  Generalized principal component analysis (GPCA) , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Michael Elad,et al.  Linear-Time Subspace Clustering via Bipartite Graph Modeling , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[8]  Axel Ruhe,et al.  The spectral transformation Lánczos method for the numerical solution of large sparse generalized symmetric eigenvalue problems , 1980 .

[9]  James Demmel,et al.  Applied Numerical Linear Algebra , 1997 .

[10]  Terrence J. Sejnowski,et al.  Learning Overcomplete Representations , 2000, Neural Computation.

[11]  Shuicheng Yan,et al.  Robust and Efficient Subspace Segmentation via Least Squares Regression , 2012, ECCV.

[12]  Kesheng Wu,et al.  Dynamic Thick Restarting of the Davidson, and the Implicitly Restarted Arnoldi Methods , 1998, SIAM J. Sci. Comput..

[13]  Yong Yu,et al.  Robust Subspace Segmentation by Low-Rank Representation , 2010, ICML.

[14]  Henk A. van der Vorst,et al.  Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems , 1992, SIAM J. Sci. Comput..

[15]  Gene H. Golub,et al.  Calculating the singular values and pseudo-inverse of a matrix , 2007, Milestones in Matrix Computation.

[16]  René Vidal,et al.  Latent Space Sparse Subspace Clustering , 2013, 2013 IEEE International Conference on Computer Vision.

[17]  Gerard L. G. Sleijpen,et al.  A Jacobi-Davidson Iteration Method for Linear Eigenvalue Problems , 1996, SIAM J. Matrix Anal. Appl..

[18]  Xiaoge Wang,et al.  CIMGS: An Incomplete Orthogonal FactorizationPreconditioner , 1997, SIAM J. Sci. Comput..

[19]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[20]  Gene H. Golub,et al.  Approximating dominant singular triplets of large sparse matrices via modified moments , 1996, Numerical Algorithms.

[21]  Michele Benzi,et al.  A Robust Preconditioner with Low Memory Requirements for Large Sparse Least Squares Problems , 2003, SIAM J. Sci. Comput..

[22]  Kjersti Engan,et al.  Method of optimal directions for frame design , 1999, 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings. ICASSP99 (Cat. No.99CH36258).

[23]  Bruno A. Olshausen,et al.  PROBABILISTIC FRAMEWORK FOR THE ADAPTATION AND COMPARISON OF IMAGE CODES , 1999 .

[24]  Y. Saad Numerical Methods for Large Eigenvalue Problems , 2011 .

[25]  Paul S. Bradley,et al.  k-Plane Clustering , 2000, J. Glob. Optim..

[26]  Jack Dongarra,et al.  Templates for the Solution of Algebraic Eigenvalue Problems , 2000, Software, environments, tools.

[27]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[28]  Chris H. Q. Ding,et al.  Bipartite graph partitioning and data clustering , 2001, CIKM '01.

[29]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[30]  David J. Kriegman,et al.  Clustering appearances of objects under varying illumination conditions , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[31]  Michael K. Ng,et al.  Dictionary Learning-Based Subspace Structure Identification in Spectral Clustering , 2013, IEEE Transactions on Neural Networks and Learning Systems.

[32]  Yvan Notay,et al.  Combination of Jacobi–Davidson and conjugate gradients for the partial symmetric eigenproblem , 2002, Numer. Linear Algebra Appl..

[33]  Zongben Xu,et al.  Enhancing Low-Rank Subspace Clustering by Manifold Regularization , 2014, IEEE Transactions on Image Processing.

[34]  Wei Dai,et al.  Simultaneous Codeword Optimization (SimCO) for Dictionary Update and Learning , 2011, IEEE Transactions on Signal Processing.

[35]  Andrew R. Webb,et al.  Statistical Pattern Recognition, Second Edition , 2002 .

[36]  Qiao Liang,et al.  Computing Singular Values of Large Matrices with an Inverse-Free Preconditioned Krylov Subspace Method , 2014 .

[37]  T. Boult,et al.  Factorization-based segmentation of motions , 1991, Proceedings of the IEEE Workshop on Visual Motion.

[38]  Yonina C. Eldar,et al.  Dictionary Optimization for Block-Sparse Representations , 2010, IEEE Transactions on Signal Processing.

[39]  Gene H. Golub,et al.  Matrix computations , 1983 .

[40]  Gerard L. G. Sleijpen,et al.  Jacobi-Davidson Style QR and QZ Algorithms for the Reduction of Matrix Pencils , 1998, SIAM J. Sci. Comput..

[41]  R. Morgan Computing Interior Eigenvalues of Large Matrices , 1991 .

[42]  Takeo Kanade,et al.  A Multibody Factorization Method for Independently Moving Objects , 1998, International Journal of Computer Vision.

[43]  John Wright,et al.  Segmentation of Multivariate Mixed Data via Lossy Data Coding and Compression , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[45]  Hans-Peter Kriegel,et al.  Subspace clustering , 2012, WIREs Data Mining Knowl. Discov..

[46]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..

[47]  C. W. Gear,et al.  Multibody Grouping from Motion Images , 1998, International Journal of Computer Vision.

[48]  A. Bruckstein,et al.  K-SVD : An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation , 2005 .

[49]  Andrew Knyazev,et al.  Preconditioned Eigensolvers - an Oxymoron? , 1998 .

[50]  R. Vidal,et al.  Sparse Subspace Clustering: Algorithm, Theory, and Applications. , 2013, IEEE transactions on pattern analysis and machine intelligence.

[51]  Zhongxiao Jia,et al.  An Implicitly Restarted Refined Bidiagonalization Lanczos Method for Computing a Partial Singular Value Decomposition , 2003, SIAM J. Matrix Anal. Appl..

[52]  R. Lehoucq,et al.  Deflation Techniques within an Implicitly Restarted Arnoldi Iteration * , 2003 .

[53]  M. Elad,et al.  $rm K$-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation , 2006, IEEE Transactions on Signal Processing.

[54]  H. V. D. Vorst,et al.  EFFICIENT EXPANSION OF SUBSPACES IN THE JACOBI-DAVIDSON METHOD FOR STANDARD AND GENERALIZED EIGENPROBLEMS , 1998 .

[55]  R. Larsen Lanczos Bidiagonalization With Partial Reorthogonalization , 1998 .

[56]  A. Knyazev A Preconditioned Conjugate Gradient Method for Eigenvalue Problems and its Implementation in a Subspace , 1991 .

[57]  Inderjit S. Dhillon,et al.  Co-clustering documents and words using bipartite spectral graph partitioning , 2001, KDD '01.

[58]  Danny C. Sorensen,et al.  Implicit Application of Polynomial Filters in a k-Step Arnoldi Method , 1992, SIAM J. Matrix Anal. Appl..

[59]  Patrice Y. Simard,et al.  Metrics and Models for Handwritten Character Recognition , 1998 .

[60]  Iain S. Duff,et al.  Incomplete Orthogonal Factorization Methods Using Givens Rotations II: Implementation and Results , 2002 .

[61]  Michael W. Berry,et al.  Large-Scale Sparse Singular Value Computations , 1992 .

[62]  Andrew R. Webb,et al.  Statistical Pattern Recognition , 1999 .

[63]  Yoshua Bengio,et al.  An empirical evaluation of deep architectures on problems with many factors of variation , 2007, ICML '07.

[64]  R. Lehoucq Analysis and implementation of an implicitly restarted Arnoldi iteration , 1996 .

[65]  Rémi Gribonval,et al.  Learning unions of orthonormal bases with thresholded singular value decomposition , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[66]  Kenichi Kanatani,et al.  Motion segmentation by subspace separation and model selection , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[67]  René Vidal,et al.  Multiframe Motion Segmentation with Missing Data Using PowerFactorization and GPCA , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[68]  Joseph F. Murray,et al.  Dictionary Learning Algorithms for Sparse Representation , 2003, Neural Computation.

[69]  P. Tseng Nearest q-Flat to m Points , 2000 .

[70]  Qiang Ye,et al.  A block inverse-free preconditioned Krylov subspace method for symmetric generalized eigenvalue problems , 2010, J. Comput. Appl. Math..

[71]  Paul Tseng,et al.  Block coordinate relaxation methods for nonparametric signal denoising with wavelet dictionaries , 2000 .

[72]  G. Golub,et al.  Inexact Inverse Iteration for Generalized Eigenvalue Problems , 2000 .

[73]  Andrew V. Knyazev,et al.  Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..

[74]  Lothar Reichel,et al.  Algorithm 827: irbleigs: A MATLAB program for computing a few eigenpairs of a large sparse Hermitian matrix , 2003, TOMS.

[75]  Danny C. Sorensen,et al.  Deflation Techniques for an Implicitly Restarted Arnoldi Iteration , 1996, SIAM J. Matrix Anal. Appl..

[76]  John Wright,et al.  Segmentation of multivariate mixed data via lossy coding and compression , 2007, Electronic Imaging.

[77]  A. George,et al.  Householder reflections versus givens rotations in sparse orthogonal decomposition , 1987 .

[78]  Michele Benzi,et al.  Robust Approximate Inverse Preconditioning for the Conjugate Gradient Method , 2000, SIAM J. Sci. Comput..

[79]  Chao Yang,et al.  ARPACK users' guide - solution of large-scale eigenvalue problems with implicitly restarted Arnoldi methods , 1998, Software, environments, tools.

[80]  Michiel E. Hochstenbach,et al.  Harmonic and Refined Extraction Methods for the Singular Value Problem, with Applications in Least Squares Problems , 2004 .

[81]  Qiang Ye,et al.  Algorithm 845: EIGIFP: a MATLAB program for solving large symmetric generalized eigenvalue problems , 2005, TOMS.

[82]  René Vidal,et al.  Sparse subspace clustering , 2009, CVPR.

[83]  Gene H. Golub,et al.  An Inverse Free Preconditioned Krylov Subspace Method for Symmetric Generalized Eigenvalue Problems , 2002, SIAM J. Sci. Comput..

[84]  Qiang Ye,et al.  An adaptive block Lanczos algorithm , 1996, Numerical Algorithms.

[85]  P. Tseng,et al.  Block Coordinate Relaxation Methods for Nonparametric Wavelet Denoising , 2000 .

[86]  Christopher M. Bishop,et al.  Mixtures of Probabilistic Principal Component Analyzers , 1999, Neural Computation.

[87]  René Vidal,et al.  Low rank subspace clustering (LRSC) , 2014, Pattern Recognit. Lett..

[88]  Efstratios Gallopoulos,et al.  Computing smallest singular triplets with implicitly restarted Lanczos bidiagonalization , 2004, Applied Numerical Mathematics.

[89]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[90]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[91]  Lothar Reichel,et al.  Augmented Implicitly Restarted Lanczos Bidiagonalization Methods , 2005, SIAM J. Sci. Comput..

[92]  Gilad Lerman,et al.  Median K-Flats for hybrid linear modeling with many outliers , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[93]  Michiel E. Hochstenbach,et al.  A Jacobi-Davidson Type SVD Method , 2001, SIAM J. Sci. Comput..