Title Sparse Fault-Tolerant Spanners for Doubling Metrics withBounded Hop-Diameter or Degree

We study fault-tolerant spanners in doubling metrics. A subgraph H for a metric space X is called a k-vertex-fault-tolerant t-spanner ((k, t)-VFTS or simply k-VFTS), if for any subset S ⊆ X with |S| ≤ k, it holds that dH\S(x, y) ≤ t · d(x, y), for any pair of x, y ∈ X \ S. For any doubling metric, we give a basic construction of k-VFTS with stretch arbitrarily close to 1 that has optimal O(kn) edges. In addition, we also consider bounded hop-diameter, which is studied in the context of fault-tolerance for the first time even for Euclidean spanners. We provide a construction of k-VFTS with bounded hop-diameter: for m ≥ 2n, we can reduce the hop-diameter of the above k-VFTS to O(α(m,n)) by adding O(km) edges, where α is a functional inverse of the Ackermann’s function. Finally, we construct a fault-tolerant single-sink spanner with bounded maximum degree, and use it to reduce the maximum degree of our basic k-VFTS. As a result, we get a k-VFTS with O(kn) edges and maximum degree O(k).

[1]  Robert E. Tarjan,et al.  Efficiency of a Good But Not Linear Set Union Algorithm , 1972, JACM.

[2]  Bernard Chazelle Computing on a Free Tree via Complexity-Preserving Mappings , 1984, FOCS.

[3]  S. Rao Kosaraju,et al.  Faster algorithms for some geometric graph problems in higher dimensions , 1993, SODA '93.

[4]  Michiel H. M. Smid,et al.  Euclidean spanners: short, thin, and lanky , 1995, STOC '95.

[5]  Giri Narasimhan,et al.  A Fast Algorithm for Constructing Sparse Euclidean Spanners , 1997, Int. J. Comput. Geom. Appl..

[6]  Giri Narasimhan,et al.  Efficient algorithms for constructing fault-tolerant geometric spanners , 1998, STOC '98.

[7]  Tamás Lukovszki,et al.  New Results of Fault Tolerant Geometric Spanners , 1999, WADS.

[8]  Robert Krauthgamer,et al.  Bounded geometries, fractals, and low-distortion embeddings , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[9]  Artur Czumaj,et al.  Fault-Tolerant Geometric Spanners , 2003, SCG '03.

[10]  Bruce M. Maggs,et al.  On hierarchical routing in doubling metrics , 2005, SODA '05.

[11]  Bernard Chazelle,et al.  Computing on a free tree via complexity-preserving mappings , 1984, Algorithmica.

[12]  Sariel Har-Peled,et al.  Fast construction of nets in low dimensional metrics, and their applications , 2004, SCG.

[13]  Anupam Gupta,et al.  Small Hop-diameter Sparse Spanners for Doubling Metrics , 2006, SODA '06.

[14]  Giri Narasimhan,et al.  Geometric spanner networks , 2007 .

[15]  Lee-Ad Gottlieb,et al.  An Optimal Dynamic Spanner for Doubling Metric Spaces , 2008, ESA.

[16]  Michael Langberg,et al.  Fault Tolerant Spanners for General Graphs , 2010, SIAM J. Comput..

[17]  Michael Dinitz,et al.  Fault-tolerant spanners: better and simpler , 2011, PODC '11.

[18]  Michael Elkin,et al.  Balancing Degree, Diameter, and Weight in Euclidean Spanners , 2011, SIAM J. Discret. Math..