Improving Estimates of Monotone Functions by Rearrangement
暂无分享,去创建一个
Victor Chernozhukov | Alfred Galichon | Ivan Fernandez-Val | V. Chernozhukov | Iván Fernández-Val | Alfred Galichon
[1] Q. Shao,et al. On Parameters of Increasing Dimensions , 2000 .
[2] R. Koenker,et al. Quantile regression methods for reference growth charts , 2006, Statistics in medicine.
[3] W. Newey,et al. Convergence rates and asymptotic normality for series estimators , 1997 .
[4] Probal Chaudhuri,et al. Nonparametric Estimates of Regression Quantiles and Their Local Bahadur Representation , 1991 .
[5] R. Koenker,et al. Regression Quantiles , 2007 .
[6] C. J. Stone,et al. The Use of Polynomial Splines and Their Tensor Products in Multivariate Function Estimation , 1994 .
[7] H. Dette,et al. A simple nonparametric estimator of a strictly monotone regression function , 2006 .
[8] Matthew P. Wand,et al. Kernel Smoothing , 1995 .
[9] George G. Lorentz,et al. An Inequality for Rearrangements , 1953 .
[10] Jianqing Fan,et al. Local polynomial modelling and its applications , 1994 .
[11] G. Burton. TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .
[12] Rosa L. Matzkin. Restrictions of economic theory in nonparametric methods , 1994 .
[13] D. Andrews. Asymptotic Normality of Series Estimators for Nonparametric and Semiparametric Regression Models , 1991 .
[14] T. Cole. Fitting Smoothed Centile Curves to Reference Data , 1988 .
[15] Stephen Portnoy,et al. Local asymptotics for quantile smoothing splines , 1997 .
[16] K. Knight. What are the Limiting Distributions of Quantile Estimators , 2002 .
[17] Holger Dette,et al. A comparative study of monotone nonparametric kernel estimates , 2006 .
[18] A. Gallant,et al. On the bias in flexible functional forms and an essentially unbiased form : The fourier flexible form , 1981 .
[19] V. Chernozhukov,et al. QUANTILE AND PROBABILITY CURVES WITHOUT CROSSING , 2007, 0704.3649.
[20] Roger Koenker,et al. Inequality constrained quantile regression , 2005 .