Improving Estimates of Monotone Functions by Rearrangement

Suppose that a target function is monotonic, namely, weakly increasing, and an original estimate of the target function is available, which is not weakly increasing. Many common estimation methods used in statistics produce such estimates. We show that these estimates can always be improved with no harm using rearrangement techniques: The rearrangement methods, univariate and multivariate, transform the original estimate to a monotonic estimate, and the resulting estimate is closer to the true curve in common metrics than the original estimate. We illustrate the results with a computational example and an empirical example dealing with age-height growth charts.

[1]  Q. Shao,et al.  On Parameters of Increasing Dimensions , 2000 .

[2]  R. Koenker,et al.  Quantile regression methods for reference growth charts , 2006, Statistics in medicine.

[3]  W. Newey,et al.  Convergence rates and asymptotic normality for series estimators , 1997 .

[4]  Probal Chaudhuri,et al.  Nonparametric Estimates of Regression Quantiles and Their Local Bahadur Representation , 1991 .

[5]  R. Koenker,et al.  Regression Quantiles , 2007 .

[6]  C. J. Stone,et al.  The Use of Polynomial Splines and Their Tensor Products in Multivariate Function Estimation , 1994 .

[7]  H. Dette,et al.  A simple nonparametric estimator of a strictly monotone regression function , 2006 .

[8]  Matthew P. Wand,et al.  Kernel Smoothing , 1995 .

[9]  George G. Lorentz,et al.  An Inequality for Rearrangements , 1953 .

[10]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[11]  G. Burton TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .

[12]  Rosa L. Matzkin Restrictions of economic theory in nonparametric methods , 1994 .

[13]  D. Andrews Asymptotic Normality of Series Estimators for Nonparametric and Semiparametric Regression Models , 1991 .

[14]  T. Cole Fitting Smoothed Centile Curves to Reference Data , 1988 .

[15]  Stephen Portnoy,et al.  Local asymptotics for quantile smoothing splines , 1997 .

[16]  K. Knight What are the Limiting Distributions of Quantile Estimators , 2002 .

[17]  Holger Dette,et al.  A comparative study of monotone nonparametric kernel estimates , 2006 .

[18]  A. Gallant,et al.  On the bias in flexible functional forms and an essentially unbiased form : The fourier flexible form , 1981 .

[19]  V. Chernozhukov,et al.  QUANTILE AND PROBABILITY CURVES WITHOUT CROSSING , 2007, 0704.3649.

[20]  Roger Koenker,et al.  Inequality constrained quantile regression , 2005 .