Bayesian quantum frequency estimation in presence of collective dephasing

We advocate a Bayesian approach to optimal quantum frequency estimation—an important issue for future quantum enhanced atomic clock operation. The approach provides a clear insight into the interplay between decoherence and the extent of prior knowledge in determining the optimal interrogation times and optimal estimation strategies. We propose a general framework capable of describing local oscillator noise as well as additional collective atomic dephasing effects. For a Gaussian noise, the average Bayesian cost can be expressed using the quantum Fisher information. Thus we establish a direct link between the two, often competing, approaches to quantum estimation theory.

[1]  Alex W Chin,et al.  Quantum metrology in non-Markovian environments. , 2011, Physical review letters.

[2]  M. Oberthaler,et al.  Nonlinear atom interferometer surpasses classical precision limit , 2010, Nature.

[3]  U. Dorner,et al.  Quantum frequency estimation with trapped ions and atoms , 2011, 1102.1361.

[4]  Moore,et al.  Spin squeezing and reduced quantum noise in spectroscopy. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[5]  Wiseman,et al.  Optimal states and almost optimal adaptive measurements for quantum interferometry , 2000, Physical review letters.

[6]  A. Ludlow,et al.  An Atomic Clock with 10–18 Instability , 2013, Science.

[7]  A. Sørensen,et al.  Efficient atomic clocks operated with several atomic ensembles. , 2013, Physical review letters.

[8]  J. Cirac,et al.  Improvement of frequency standards with quantum entanglement , 1997, quant-ph/9707014.

[9]  L. Davidovich,et al.  General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology , 2011, 1201.1693.

[10]  C. Caves Quantum Mechanical Noise in an Interferometer , 1981 .

[11]  S. Schilt,et al.  Simple approach to the relation between laser frequency noise and laser line shape. , 2010, Applied optics.

[12]  C. Helstrom Quantum detection and estimation theory , 1969 .

[13]  T. Monz,et al.  14-Qubit entanglement: creation and coherence. , 2010, Physical review letters.

[14]  Steward D. Personick,et al.  Application of quantum estimation theory to analog communication over quantum channels , 1971, IEEE Trans. Inf. Theory.

[15]  G. Summy,et al.  PHASE OPTIMIZED QUANTUM STATES OF LIGHT , 1990 .

[16]  Vadim N. Smelyanskiy,et al.  Scaling laws for precision in quantum interferometry and the bifurcation landscape of the optimal state , 2010, 1006.1645.

[17]  D. Wineland,et al.  Optical Clocks and Relativity , 2010, Science.

[18]  F. Hansen,et al.  Jensen's Operator Inequality , 2002, math/0204049.

[19]  A S Sørensen,et al.  Near-Heisenberg-limited atomic clocks in the presence of decoherence. , 2013, Physical review letters.

[20]  K. Banaszek,et al.  Quantum phase estimation with lossy interferometers , 2009, 0904.0456.

[21]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[22]  Rafał Demkowicz-Dobrzański,et al.  The elusive Heisenberg limit in quantum-enhanced metrology , 2012, Nature Communications.

[23]  Konrad Banaszek,et al.  Fundamental quantum interferometry bound for the squeezed-light-enhanced gravitational wave detector GEO 600 , 2013, 1305.7268.

[24]  Holland,et al.  Interferometric detection of optical phase shifts at the Heisenberg limit. , 1993, Physical review letters.

[25]  S. Massar,et al.  Optimal quantum clocks , 1998, quant-ph/9808042.

[26]  Ian A. Walmsley,et al.  Quantum states made to measure , 2009, 0912.4092.

[27]  David Blair,et al.  A gravitational wave observatory operating beyond the quantum shot-noise limit: Squeezed light in application , 2011, 1109.2295.

[28]  Mohan Sarovar,et al.  Optimal estimation of one-parameter quantum channels , 2004 .

[29]  C. F. Roos,et al.  ‘Designer atoms’ for quantum metrology , 2006, Nature.

[30]  Brian J. Smith,et al.  Optimal quantum phase estimation. , 2008, Physical review letters.

[31]  Jonathan P. Dowling,et al.  A quantum Rosetta stone for interferometry , 2002, quant-ph/0202133.

[32]  Time too good to be true , 2006 .

[33]  Jan Kolodynski,et al.  Efficient tools for quantum metrology with uncorrelated noise , 2013, 1303.7271.

[34]  S. Lloyd,et al.  Advances in quantum metrology , 2011, 1102.2318.

[35]  Carlton M. Caves,et al.  Qubit metrology and decoherence , 2007, 0705.1002.

[36]  Rafal Demkowicz-Dobrzanski,et al.  Optimal phase estimation with arbitrary a priori knowledge , 2011, 1102.0786.

[37]  S. Lloyd,et al.  Quantum metrology. , 2005, Physical review letters.

[38]  Sean D. Huver,et al.  Entangled Fock states for Robust Quantum Optical Metrology, Imaging, and Sensing , 2008, 0805.0296.

[39]  K. R. Brown,et al.  Microwave quantum logic gates for trapped ions , 2011, Nature.

[40]  Jan Kolodynski,et al.  Phase estimation without a priori phase knowledge in the presence of loss , 2010, 1006.0734.

[41]  M W Mitchell,et al.  Spin-squeezing of a large-spin system via QND measurement DRAFT , 2011, 2012 Conference on Lasers and Electro-Optics (CLEO).

[42]  Kenji Numata,et al.  Thermal-noise limit in the frequency stabilization of lasers with rigid cavities. , 2004, Physical review letters.

[43]  Emanuel Knill,et al.  Improving quantum clocks via semidefinite programming , 2011, Quantum Inf. Comput..

[44]  D. Leibfried,et al.  Toward Heisenberg-Limited Spectroscopy with Multiparticle Entangled States , 2004, Science.

[45]  Wineland,et al.  Optimal frequency measurements with maximally correlated states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[46]  A. Ludlow,et al.  Making optical atomic clocks more stable with 10-16-level laser stabilization , 2011, 1101.1351.

[47]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[48]  A S Sørensen,et al.  Stability of atomic clocks based on entangled atoms. , 2004, Physical review letters.

[49]  Stefano Olivares,et al.  Optical phase estimation in the presence of phase diffusion. , 2010, Physical review letters.