Bounded Situation Calculus Action Theories and Decidable Verification

We define a notion of bounded action theory in the situation calculus, where the theory entails that in all situations, the number of ground fluent atoms is bounded by a constant. Such theories can still have an infinite domain and an infinite set of states. We argue that such theories are fairly common in applications, either because facts do not persist indefinitely or because one eventually forgets some facts, as one learns new ones. We discuss various ways of obtaining bounded action theories. The main result of the paper is that verification of an expressive class of first-order μ-calculus temporal properties in such theories is in fact decidable.

[1]  Alessio Lomuscio,et al.  Verification of Deployed Artifact Systems via Data Abstraction , 2011, ICSOC.

[2]  Giuseppe De Giacomo,et al.  Situation Calculus Based Programs for Representing and Reasoning about Game Structures , 2010, KR.

[3]  Leonid Libkin,et al.  Embedded Finite Models and Constraint Databases , 2007 .

[4]  Hector J. Levesque,et al.  Iterated belief change in the situation calculus , 2000, Artif. Intell..

[5]  Raymond Reiter,et al.  The Frame Problem in the Situation Calculus: A Simple Solution (Sometimes) and a Completeness Result for Goal Regression , 1991, Artificial and Mathematical Theory of Computation.

[6]  PirriFiora,et al.  Some contributions to the metatheory of the situation calculus , 1999 .

[7]  John G. Gibbons Knowledge in Action , 2001 .

[8]  Jelle Gerbrandy,et al.  Dynamic epistemic logic , 1998 .

[9]  Maria del Pilar Pozos Parra,et al.  A Simple and Tractable Extension of Situation Calculus to Epistemic Logic , 2000, ISMIS.

[10]  Hector J. Levesque,et al.  ConGolog, a concurrent programming language based on the situation calculus , 2000, Artif. Intell..

[11]  Sheila A. McIlraith,et al.  Planning with Qualitative Temporal Preferences , 2006, KR.

[12]  Alex M. Andrew,et al.  Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems , 2002 .

[13]  Hector J. Levesque,et al.  Projection Using Regression and Sensors , 1999, IJCAI.

[14]  John McCarthy,et al.  SOME PHILOSOPHICAL PROBLEMS FROM THE STANDPOINT OF ARTI CIAL INTELLIGENCE , 1987 .

[15]  Hongyan Ma,et al.  Process-aware information systems: Bridging people and software through process technology , 2007, J. Assoc. Inf. Sci. Technol..

[16]  Raymond Reiter,et al.  Some contributions to the metatheory of the situation calculus , 1999, JACM.

[17]  Eugenia Ternovska,et al.  Automata Theory for Reasoning About Actions , 1999, IJCAI.

[18]  Richard Hull,et al.  Artifact-Centric Business Process Models: Brief Survey of Research Results and Challenges , 2008, OTM Conferences.

[19]  Tonya Lewis,et al.  Knowledge in Action , 1977 .

[20]  Raymond Reiter,et al.  Towards a Logical Reconstruction of Relational Database Theory , 1982, On Conceptual Modelling.

[21]  Jianwen Su,et al.  Specification and Verification of Artifact Behaviors in Business Process Models , 2007, ICSOC.

[22]  Ute Beyer,et al.  Process-Aware Information Systems: Bridging People and Software Through Process Technology , 2005 .

[23]  Hector J. Levesque,et al.  GOLOG: A Logic Programming Language for Dynamic Domains , 1997, J. Log. Program..

[24]  Serge Abiteboul,et al.  Foundations of Databases , 1994 .

[25]  Wil M. P. van der Aalst,et al.  Process Aware Information Systems: Bridging People and Software Through Process Technology , 2005 .

[26]  Gerhard Lakemeyer,et al.  A Logic for Non-Terminating Golog Programs , 2008, KR.

[27]  Hector J. Levesque,et al.  Knowledge, action, and the frame problem , 2003, Artif. Intell..

[28]  Hector J. Levesque,et al.  What Robots Can Do: Robot Programs and Effective Achievability , 1998, Artif. Intell..

[29]  Christel Baier,et al.  Principles of model checking , 2008 .

[30]  Christel Baier,et al.  Principles of Model Checking (Representation and Mind Series) , 2008 .

[31]  Colin Stirling,et al.  Modal and Temporal Properties of Processes , 2001, Texts in Computer Science.

[32]  Diego Calvanese,et al.  Foundations of Relational Artifacts Verification , 2011, BPM.

[33]  E. Allen Emerson,et al.  Model Checking and the Mu-calculus , 1996, Descriptive Complexity and Finite Models.

[34]  Alin Deutsch,et al.  Automatic verification of data-centric business processes , 2009, ICDT '09.

[35]  Mikhail Soutchanski,et al.  Decidable Reasoning in a Modified Situation Calculus , 2007, IJCAI.

[36]  Craig Boutilier,et al.  Decision-Theoretic, High-Level Agent Programming in the Situation Calculus , 2000, AAAI/IAAI.