Holographic Algorithms by Fibonacci Gates and Holographic Reductions for Hardness

We propose a new method to prove complexity dichotomy theorems. First we introduce Fibonacci gates which provide a new class of polynomial time holographic algorithms. Then we develop holographic reductions. We show that holographic reductions followed by interpolations provide a uniform strategy to prove #P-hardness.

[1]  Martin E. Dyer,et al.  The complexity of counting graph homomorphisms , 2000, Random Struct. Algorithms.

[2]  Leslie Ann Goldberg,et al.  A Complexity Dichotomy for Partition Functions with Mixed Signs , 2008, SIAM J. Comput..

[3]  Andrei A. Bulatov The Complexity of the Counting Constraint Satisfaction Problem , 2008, ICALP.

[4]  Leslie G. Valiant,et al.  Holographic Algorithms (Extended Abstract) , 2004, FOCS.

[5]  Martin E. Dyer,et al.  The Complexity of Weighted Boolean #CSP , 2009, SIAM J. Comput..

[6]  Sanjeev Khanna,et al.  Complexity classifications of Boolean constraint satisfaction problems , 2001, SIAM monographs on discrete mathematics and applications.

[7]  Leslie G. Valiant,et al.  The Complexity of Computing the Permanent , 1979, Theor. Comput. Sci..

[8]  P. W. Kasteleyn The Statistics of Dimers on a Lattice , 1961 .

[9]  Martin E. Dyer,et al.  On Counting Homomorphisms to Directed Acyclic Graphs , 2006, ICALP.

[10]  Leslie G. Valiant,et al.  Quantum Circuits That Can Be Simulated Classically in Polynomial Time , 2002, SIAM J. Comput..

[11]  Salil P. Vadhan,et al.  The Complexity of Counting in Sparse, Regular, and Planar Graphs , 2002, SIAM J. Comput..

[12]  Peng Zhang,et al.  Computational complexity of counting problems on 3-regular planar graphs , 2007, Theor. Comput. Sci..

[13]  Catherine S. Greenhill,et al.  The complexity of counting graph homomorphisms , 2000 .

[14]  Andrei A. Bulatov,et al.  The complexity of partition functions , 2005, Theor. Comput. Sci..

[15]  Nadia Creignou,et al.  Complexity of Generalized Satisfiability Counting Problems , 1996, Inf. Comput..

[16]  M. Fisher,et al.  Dimer problem in statistical mechanics-an exact result , 1961 .

[17]  Michael Luby,et al.  Approximating the Permanent of Graphs with Large Factors , 1992, Theor. Comput. Sci..

[18]  Jin-Yi Cai,et al.  Holographic algorithms: from art to science , 2007, STOC '07.

[19]  Leslie G. Valiant,et al.  Accidental Algorithms , 2006, FOCS.

[20]  Jin-Yi Cai,et al.  On Symmetric Signatures in Holographic Algorithms , 2007, STACS.

[21]  P. W. Kasteleyn The statistics of dimers on a lattice: I. The number of dimer arrangements on a quadratic lattice , 1961 .