Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity

Equiatomic alloys (e.g. high entropy alloys) have recently attracted considerable interest due to their exceptional properties, which might be closely related to their extreme disorder induced by the chemical complexity. In order to understand the effects of chemical complexity on their fundamental physical properties, a family of (eight) Ni-based, face-center-cubic (FCC), equiatomic alloys, extending from elemental Ni to quinary high entropy alloys, has been synthesized, and their electrical, thermal, and magnetic properties are systematically investigated in the range of 4–300 K by combining experiments with ab initio Korring-Kohn-Rostoker coherent-potential-approximation (KKR-CPA) calculations. The scattering of electrons is significantly increased due to the chemical (especially magnetic) disorder. It has weak correlation with the number of elements but strongly depends on the type of elements. Thermal conductivities of the alloys are largely lower than pure metals, primarily because the high electrical resistivity suppresses the electronic thermal conductivity. The temperature dependence of the electrical and thermal transport properties is further discussed, and the magnetization of five alloys containing three or more elements is measured in magnetic fields up to 4 T.

[1]  Butler,et al.  Theory of electronic transport in random alloys: Korringa-Kohn-Rostoker coherent-potential approximation. , 1985, Physical review. B, Condensed matter.

[2]  John C. Horwath,et al.  Absence of long-range chemical ordering in equimolar FeCoCrNi , 2012 .

[3]  R. K. Williams,et al.  Thermal conductivity of metals and alloys , 1986 .

[4]  X. Ni,et al.  Ab initio study of AlxMoNbTiV high-entropy alloys , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[5]  John C. Horwath,et al.  Magnetic and vibrational properties of high-entropy alloys , 2011 .

[6]  T. Shun,et al.  Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes , 2004 .

[7]  W. Baber The Contribution to the Electrical Resistance of Metals from Collisions between Electrons , 1937 .

[8]  J. Yeh,et al.  Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys , 2011 .

[9]  Easo P George,et al.  Microstructures and mechanical properties of a directionally solidified NiAl–Mo eutectic alloy , 2005 .

[10]  lattice thermal conductivity of disordered NiPd and NiPt alloys , 2005, cond-mat/0512654.

[11]  J. Kondo Resistance Minimum in Dilute Magnetic Alloys , 1964 .

[12]  T. Kasuya Effects of s-d Interaction on Transport Phenomena , 1959 .

[13]  Ming-Hung Tsai,et al.  Physical Properties of High Entropy Alloys , 2013, Entropy.

[14]  R. A. Matula,et al.  Electrical Resistivity of Ten Selected Binary Alloy Systems , 1983 .

[15]  Patrick A. Lee,et al.  Disordered Electronic Systems , 1985, The Quantum Nature of Materials.

[16]  A. Majumdar,et al.  Electron transport studies in Ni-rich γ-NiFeCr alloys , 1998 .

[17]  L. Vitos,et al.  Ab initio investigation of high-entropy alloys of 3d elements , 2013 .

[18]  D. Miracle,et al.  Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys , 2011 .

[19]  A. Majumdar,et al.  Magnetic phase diagram of Fe 80-x Ni x Cr 20 (10<=x<=30) alloys , 1984 .

[20]  J. Jäckle,et al.  On the temperature dependence of the electrical resistivity of amorphous metals , 1977 .

[21]  Fuyang Tian,et al.  Structural stability of NiCoFeCrAlx high-entropy alloy from ab initio theory , 2013 .

[22]  G. Watt Alloys , 1855, Nature.

[23]  J. Mooij Electrical Conduction in Concentrated Disordered Transition Metal Alloys , 1973, June 16.

[24]  M. D. Jong,et al.  Structural and Electrical Properties of Sputtered CrNi Films , 1972 .

[25]  A. Smirnov,et al.  Atomic short-range order and incipient long-range order in high-entropy alloys , 2015 .

[26]  Banerjee,et al.  Electrical resistivities of gamma -phase FexNi80-xCr20 alloys. , 1994, Physical review. B, Condensed matter.

[27]  G. Eggeler,et al.  The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy , 2013 .

[28]  Johnson,et al.  Density-functional theory for random alloys: Total energy within the coherent-potential approximation. , 1986, Physical review letters.

[29]  P. Liaw,et al.  High-entropy Alloys with High Saturation Magnetization, Electrical Resistivity, and Malleability , 2013, Scientific Reports.

[30]  C. Koch,et al.  Spin-driven ordering of Cr in the equiatomic high entropy alloy NiFeCrCo , 2015 .

[31]  G. M. Stocks,et al.  Soft x-ray emission from li-mg and li-Al alloys and comparisons with kkr-cpa calculations. , 1980, Applied optics.

[32]  Ján Minár,et al.  Calculating condensed matter properties using the KKR-Green's function method—recent developments and applications , 2011 .

[33]  T. Kasuya Electrical Resistance of Ferromagnetic Metals , 1956 .

[34]  R. Ritchie,et al.  A fracture-resistant high-entropy alloy for cryogenic applications , 2014, Science.

[35]  Jien-Wei Yeh,et al.  Microstructure, thermophysical and electrical properties in AlxCoCrFeNi (0 ≤ x ≤2) high-entropy alloys , 2009 .

[36]  G. Eggeler,et al.  Temperature dependencies of the elastic moduli and thermal expansion coefficient of an equiatomic, single-phase CoCrFeMnNi high-entropy alloy , 2015 .

[37]  G. Pharr,et al.  Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures , 2014 .

[38]  E. Holmström,et al.  Temperature dependent stacking fault energy of FeCrCoNiMn high entropy alloy , 2015 .

[39]  J. Yeh,et al.  Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys , 2013 .

[40]  C. Ho,et al.  Thermal conductivity of ten selected binary alloy systems , 1978 .

[41]  R. Stoller,et al.  Lattice thermal conductivity of multi-component alloys , 2015 .

[42]  M. Gurvitch Ioffe-Regel criterion and resistivity of metals , 1981 .

[43]  H. Ebert,et al.  Electronic and transport properties of disordered transition‐metal alloys , 2011 .

[44]  Nevill Francis Mott,et al.  The Electrical Conductivity of Transition Metals , 1936 .

[45]  George M. Pharr,et al.  Recovery, recrystallization, grain growth and phase stability of a family of FCC-structured multi-component equiatomic solid solution alloys , 2014 .

[46]  Temperature dependence of the electrical resistivity and the anisotropic magnetoresistance (AMR) of electrodeposited Ni-Co alloys , 2010, 1607.01960.

[47]  Ward,et al.  First-principles calculation of the residual electrical resistivity of random alloys. , 1986, Physical review letters.

[48]  Steven J. Zinkle,et al.  Designing Radiation Resistance in Materials for Fusion Energy , 2014 .

[49]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[50]  I. Mannari Electrical Resistance of Ferromagnetic Metals , 1959 .

[51]  Winter,et al.  Electronic density of states and the x-ray photoelectron spectra of the valence band of Cu-Pd alloys. , 1986, Physical review. B, Condensed matter.

[52]  C. Liu,et al.  Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase , 2011 .

[53]  B. Cantor,et al.  Microstructural development in equiatomic multicomponent alloys , 2004 .