The making of a photosynthetic animal

Summary Symbiotic animals containing green photobionts challenge the common perception that only plants are capable of capturing the sun's rays and converting them into biological energy through photoautotrophic CO2 fixation (photosynthesis). ‘Solar-powered’ sacoglossan molluscs, or sea slugs, have taken this type of symbiotic association one step further by solely harboring the photosynthetic organelle, the plastid (=chloroplast). One such sea slug, Elysia chlorotica, lives as a ‘plant’ when provided with only light and air as a result of acquiring plastids during feeding on its algal prey Vaucheria litorea. The captured plastids (kleptoplasts) are retained intracellularly in cells lining the digestive diverticula of the sea slug, a phenomenon sometimes referred to as kleptoplasty. Photosynthesis by the plastids provides E. chlorotica with energy and fixed carbon for its entire lifespan of ∼10 months. The plastids are not transmitted vertically (i.e. are absent in eggs) and do not undergo division in the sea slug. However, de novo protein synthesis continues, including plastid- and nuclear-encoded plastid-targeted proteins, despite the apparent absence of algal nuclei. Here we discuss current data and provide hypotheses to explain how long-term photosynthetic activity is maintained by the kleptoplasts. This fascinating ‘green animal’ provides a unique model to study the evolution of photosynthesis in a multicellular heterotrophic organism.

[1]  S. Tyler,et al.  Acoela (Acoelomorpha) from Bocas del Toro, Panama , 2008 .

[2]  Nicholas H. Putnam,et al.  The Genome of the Diatom Thalassiosira Pseudonana: Ecology, Evolution, and Metabolism , 2004, Science.

[3]  B. J. Green,et al.  Mollusc/algal chloroplast symbiosis: how can isolated chloroplasts continue to function for months in the cytosol of a sea slug in the absence of an algal nucleus? , 2001, Zoology.

[4]  Manesh Shah,et al.  Genome divergence in two Prochlorococcus ecotypes reflects oceanic niche differentiation , 2003, Nature.

[5]  R. Trench Of 'leaves that crawl': functional chloroplasts in animal cells. , 1975, Symposia of the Society for Experimental Biology.

[6]  J. Schwartz,et al.  Using Algal Transcriptome Sequences to Identify Transferred Genes in the Sea Slug, Elysia chlorotica , 2010, Evolutionary Biology.

[7]  Mark Blaxter,et al.  On the Extent and Origins of Genic Novelty in the Phylum Nematoda , 2008, PLoS neglected tropical diseases.

[8]  D. Yellowlees,et al.  Metabolic interactions between algal symbionts and invertebrate hosts. , 2008, Plant, cell & environment.

[9]  J. Archibald,et al.  The eukaryotic tree of life: endosymbiosis takes its TOL. , 2008, Trends in ecology & evolution.

[10]  B. J. Green,et al.  Stability of isolated algal chloroplasts that participate in a unique mollusc/kleptoplast association. , 2005 .

[11]  R. Andersen,et al.  Biology and systematics of heterokont and haptophyte algae. , 2004, American journal of botany.

[12]  Bernard B. Suh,et al.  The genome of the protist parasite Entamoeba histolytica , 2005, Nature.

[13]  S. Salzberg,et al.  Contamination in the Draft of the Human Genome Masquerades As Lateral Gene Transfer , 2002, DNA Sequence.

[14]  J. Schwartz,et al.  Chlorophyll a synthesis by an animal using transferred algal nuclear genes , 2009, Symbiosis.

[15]  M. Hizume,et al.  Wolbachia genome integrated in an insect chromosome: evolution and fate of laterally transferred endosymbiont genes. , 2008, Genome research.

[16]  Trench Rk Of 'leaves that crawl': functional chloroplasts in animal cells. , 1975 .

[17]  A phylogenomic approach for studying plastid endosymbiosis. , 2008, Genome informatics. International Conference on Genome Informatics.

[18]  Sabine Cornelsen,et al.  Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[19]  E. Koonin,et al.  Horizontal gene transfer in prokaryotes: quantification and classification. , 2001, Annual review of microbiology.

[20]  R. Bock,et al.  Reconstructing evolution: Gene transfer from plastids to the nucleus , 2008, BioEssays : news and reviews in molecular, cellular and developmental biology.

[21]  K. Clark,et al.  FEEDING SPECIFICITY AND CHLOROPLAST RETENTION IN FOUR TROPICAL ASCOGLOSSA, WITH A DISCUSSION OF THE EXTENT OF CHLOROPLAST SYMBIOSIS AND THE EVOLUTION OF THE ORDER , 1978 .

[22]  J. Raven,et al.  Phagotrophy in the origins of photosynthesis in eukaryotes and as a complementary mode of nutrition in phototrophs: relation to Darwin's insectivorous plants. , 2009, Journal of experimental botany.

[23]  Nathan Nelson,et al.  Structure and function of photosystems I and II. , 2006, Annual review of plant biology.

[24]  P. Erwin,et al.  Phototrophic nutrition and symbiont diversity of two Caribbean sponge-cyanobacteria symbioses , 2008 .

[25]  D. Lavrov Key transitions in animal evolution: a mitochondrial DNA perspective. , 2007, Integrative and comparative biology.

[26]  J. Andersson,et al.  Lateral gene transfer in eukaryotes , 2005, Cellular and Molecular Life Sciences CMLS.

[27]  S. P. Gibbs The evolution of algal chloroplasts , 1992 .

[28]  K. Clark,et al.  SURVEY FOR FUNCTIONAL KLEPTOPLASTY AMONG WEST ATLANTIC ASCOGLOSSA (= SACOGLOSSA) (MOLLUSCA, OPISTHOBRANCHIA) , 1990 .

[29]  Meili Xiao,et al.  Horizontal gene transfer in plants , 2013, Functional & Integrative Genomics.

[30]  D. Bhattacharya,et al.  Molecular characterization of the Calvin cycle enzyme phosphoribulokinase in the stramenopile alga Vaucheria litorea and the plastid hosting mollusc Elysia chlorotica. , 2009, Molecular plant.

[31]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[32]  M. Rumpho,et al.  LIGHT‐REGULATED PHOTOSYNTHETIC GENE EXPRESSION AND PHOSPHORIBULOKINASE ENZYME ACTIVITY IN THE HETEROKONT ALGA VAUCHERIA LITOREA (XANTHOPHYCEAE) AND ITS SYMBIOTIC MOLLUSKAN PARTNER ELYSIA CHLOROTICA (GASTROPODA) 1 , 2012, Journal of phycology.

[33]  W. Fitt,et al.  The Zooxanthellal Tubular System in the Giant Clam. , 1992, The Biological bulletin.

[34]  N. Moran,et al.  Lateral Transfer of Genes from Fungi Underlies Carotenoid Production in Aphids , 2010, Science.

[35]  W. Sakamoto Protein degradation machineries in plastids. , 2006, Annual review of plant biology.

[36]  E. Meyerowitz,et al.  Microarray analysis reveals altered expression of a large number of nuclear genes in developing cytoplasmic male sterile Brassica napus flowers. , 2007, The Plant journal : for cell and molecular biology.

[37]  I. Sanders Rapid disease emergence through horizontal gene transfer between eukaryotes. , 2006, Trends in ecology & evolution.

[38]  D. Wolstenholme,et al.  Two mitochondrial group I introns in a metazoan, the sea anemone Metridium senile: one intron contains genes for subunits 1 and 3 of NADH dehydrogenase. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Debashish Bhattacharya,et al.  PhyloSort: a user-friendly phylogenetic sorting tool and its application to estimating the cyanobacterial contribution to the nuclear genome of Chlamydomonas , 2008, BMC Evolutionary Biology.

[40]  L. Muscatine,et al.  Symbiosis of algae and invertebrates: aspects of the symbiont surface and the host-symbiont interface. , 1975, Transactions of the American Microscopical Society.

[41]  R. Trench Chloroplasts as Functional Endosymbionts in the Mollusc Tridachia crispata (Bërgh), (Opisthobranchia, Sacoglossa) , 1969, Nature.

[42]  A. Clarke,et al.  Cutting edge of chloroplast proteolysis. , 2002, Trends in plant science.

[43]  D. Bhattacharya,et al.  Horizontal gene transfer of the algal nuclear gene psbO to the photosynthetic sea slug Elysia chlorotica , 2008, Proceedings of the National Academy of Sciences.

[44]  P. Hagerman,et al.  The Mitochondrial Genome of Acropora tenuis (Cnidaria; Scleractinia) Contains a Large Group I Intron and a Candidate Control Region , 2002, Journal of Molecular Evolution.

[45]  V. Paakkarinen,et al.  Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. , 2004, Journal of experimental botany.

[46]  M. Ilan,et al.  Putative cross-kingdom horizontal gene transfer in sponge (Porifera) mitochondria , 2006, BMC Evolutionary Biology.

[47]  A. Halpern,et al.  The Sorcerer II Global Ocean Sampling Expedition: Metagenomic Characterization of Viruses within Aquatic Microbial Samples , 2008, PloS one.

[48]  D. Smith,et al.  The association between chloroplasts of Codium fragile and the mollusc Elysia viridis II. Chloroplast ultrastructure and photosynthetic carbon fixation in E. viridis , 1973, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[49]  Debashish Bhattacharya,et al.  Horizontal gene transfer in chromalveolates , 2007, BMC Evolutionary Biology.

[51]  A. Douglas,et al.  Photosynthetic symbioses in animals. , 2008, Journal of experimental botany.

[52]  Maureen L. Coleman,et al.  Three Prochlorococcus Cyanophage Genomes: Signature Features and Ecological Interpretations , 2005, PLoS biology.

[53]  W. Martin,et al.  Transcriptomic Evidence That Longevity of Acquired Plastids in the Photosynthetic Slugs Elysia timida and Plakobranchus ocellatus Does Not Entail Lateral Transfer of Algal Nuclear Genes , 2010, Molecular biology and evolution.

[54]  D. Smith,et al.  “Chloroplast symbiosis” and the extent to which it occurs in Sacoglossa (Gastropoda: Mollusca) , 1974 .

[55]  M. Woolfit,et al.  An ancient horizontal gene transfer between mosquito and the endosymbiotic bacterium Wolbachia pipientis. , 2009, Molecular biology and evolution.

[56]  Debashish Bhattacharya,et al.  Photosynthetic eukaryotes unite: endosymbiosis connects the dots. , 2004, BioEssays : news and reviews in molecular, cellular and developmental biology.

[57]  A. S. Raghavendra Photosynthesis: A Comprehensive Treatise , 2000 .

[58]  L. Muscatine,et al.  Symbiotic chloroplasts; their photosynthetic products and contribution to mucus synthesis in two marine slugs. , 1972, The Biological bulletin.

[59]  K. Jensen Observations on copulation in two species of Elysia from Florida (Opisthobranchia: Ascoglossa) , 1986 .

[60]  C. Delwiche,et al.  A HYPOTHESIS FOR PLASTID EVOLUTION IN CHROMALVEOLATES 1 , 2008, Journal of phycology.

[61]  T. Akiba,et al.  On the mechanism of the development of multiple-drug-resistant clones of Shigella. , 1960, Japanese journal of microbiology.

[62]  F. de la Cruz,et al.  Horizontal gene transfer and the origin of species: lessons from bacteria. , 2000, Trends in microbiology.

[63]  P. Keeling,et al.  Lateral gene transfer and the evolution of plastid-targeted proteins in the secondary plastid-containing alga Bigelowiella natans , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[64]  D. Leister,et al.  An improved prediction of chloroplast proteins reveals diversities and commonalities in the chloroplast proteomes of Arabidopsis and rice. , 2004, Gene.

[65]  J A Eisen,et al.  Microbial Genes in the Human Genome: Lateral Transfer or Gene Loss? , 2001, Science.

[66]  P. V. Haastert,et al.  Genomics: Genes lost during evolution , 2001, Nature.

[67]  D. Bhattacharya,et al.  THE PHYLOGENY OF PLASTIDS: A REVIEW BASED ON COMPARISONS OF SMALL‐SUBUNIT RIBOSOMAL RNA CODING REGIONS , 1995 .

[68]  Pierce,et al.  Endosymbiotic chloroplasts in molluscan cells contain proteins synthesized after plastid capture , 1996, The Journal of experimental biology.

[69]  Ahmed Moustafa,et al.  Chlamydiae Has Contributed at Least 55 Genes to Plantae with Predominantly Plastid Functions , 2008, PloS one.

[70]  M. Shimada,et al.  Genome fragment of Wolbachia endosymbiont transferred to X chromosome of host insect , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[71]  D. Bhattacharya,et al.  ENDOSYMBIOTIC AND HORIZONTAL GENE TRANSFER IN CHROMALVEOLATES 1 , 2008, Journal of phycology.

[72]  S. Gelvin Agrobacterium in the Genomics Age , 2009, Plant Physiology.

[73]  Ralph Bock,et al.  The give-and-take of DNA: horizontal gene transfer in plants. , 2010, Trends in plant science.

[74]  J. Lamerdin,et al.  An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium , 2004, Photosynthesis Research.

[75]  W. Y. Li,et al.  Mollusc-algal chloroplast endosymbiosis. Photosynthesis, thylakoid protein maintenance, and chloroplast gene expression continue for many months in the absence of the algal nucleus. , 2000, Plant physiology.

[76]  K. Brandt Über die morphologische und physiologische Bedeutung des Chlorophylls bei Thieren , 1883 .

[77]  Hua Ling,et al.  Emergence of a new disease as a result of interspecific virulence gene transfer , 2006, Nature Genetics.

[78]  J. Harrigan,et al.  HYBRIDIZATION OF 2 POPULATIONS OF A MARINE OPISTHOBRANCH WITH DIFFERENT DEVELOPMENTAL PATTERNS , 1984 .

[79]  L. Muscatine,et al.  Symbiosis in sacoglossan opisthobranchs: photosynthetic products of animal-chloroplast associations , 1972, Marine Biology.

[80]  P. Krug,et al.  Functional chloroplasts in metazoan cells - a unique evolutionary strategy in animal life , 2009, Frontiers in Zoology.

[81]  Debashish Bhattacharya,et al.  Genomic Footprints of a Cryptic Plastid Endosymbiosis in Diatoms , 2009, Science.

[82]  Ralph Bock,et al.  Exchange of Genetic Material Between Cells in Plant Tissue Grafts , 2009, Science.

[83]  Peter G Foster,et al.  Phylogenomic Analysis Demonstrates a Pattern of Rare and Ancient Horizontal Gene Transfer between Plants and Fungi[W] , 2009, The Plant Cell Online.

[84]  E. Virginia Armbrust,et al.  Ferritin is used for iron storage in bloom-forming marine pennate diatoms , 2009, Nature.

[85]  J. Bleakney,et al.  Oxygen production and consumption in the Sacoglossan (=Ascoglossan) Elysia chlorotica gould , 1986 .

[86]  Susan Boerner,et al.  Transfer, integration and expression of functional nuclear genes between multicellular species. , 2007 .

[87]  M. Rumpho,et al.  Solar-powered sea slugs. Mollusc/algal chloroplast symbiosis. , 2000, Plant physiology.

[88]  P. Keeling Functional and ecological impacts of horizontal gene transfer in eukaryotes. , 2009, Current opinion in genetics & development.

[89]  A. Galimberti,et al.  Integrated taxonomy: traditional approach and DNA barcoding for the identification of filarioid worms and related parasites (Nematoda) , 2009, Frontiers in Zoology.

[90]  S. Sunagawa,et al.  The host transcriptome remains unaltered during the establishment of coral–algal symbioses , 2009, Molecular ecology.

[91]  David C. Smith,et al.  The association between chloroplasts of Codium fragile and the mollusc Elysia viridis I. Characteristics of isolated Codium chloroplasts , 1973, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[92]  Thomas Walker,et al.  Horizontal gene transfer between Wolbachia and the mosquito Aedes aegypti , 2009, BMC Genomics.

[93]  E. Tyystjärvi Photoinhibition of Photosystem II. , 2013, International review of cell and molecular biology.

[94]  C. Whittingham,et al.  Photosynthesis , 1941, Nature.

[95]  P. Long,et al.  Enzymes of the shikimic acid pathway encoded in the genome of a basal metazoan, Nematostella vectensis, have microbial origins , 2008, Proceedings of the National Academy of Sciences.

[96]  Paul G. Falkowski,et al.  The Evolution of Modern Eukaryotic Phytoplankton , 2004, Science.

[97]  G. McFadden,et al.  PRIMARY AND SECONDARY ENDOSYMBIOSIS AND THE ORIGIN OF PLASTIDS , 2001 .

[98]  E. Aro,et al.  Photoinhibition of Photosystem II. Inactivation, protein damage and turnover. , 1993, Biochimica et biophysica acta.

[99]  B. Lang,et al.  The origin and early evolution of mitochondria , 2001, Genome Biology.

[100]  D. Bhattacharya,et al.  Tertiary endosymbiosis driven genome evolution in dinoflagellate algae. , 2005, Molecular biology and evolution.

[101]  P. Keeling,et al.  Diversity and evolutionary history of plastids and their hosts. , 2004, American journal of botany.

[102]  R. Trench,et al.  CHLOROPLASTS AS FUNCTIONAL ORGANELLES IN ANIMAL TISSUES , 1969, The Journal of cell biology.

[103]  D. Smith,et al.  Persistence of functional chloroplasts in Elysia viridis (Opisthobranchia, Sacoglossa). , 1972, Nature: New biology.

[104]  S. Adl,et al.  The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists , 2005, The Journal of eukaryotic microbiology.

[105]  Leszek Rychlewski,et al.  The Phaeodactylum genome reveals the evolutionary history of diatom genomes , 2008, Nature.

[106]  M. Meselson,et al.  Extreme resistance of bdelloid rotifers to ionizing radiation , 2008, Proceedings of the National Academy of Sciences.

[107]  A. Weber,et al.  The origin and establishment of the plastid in algae and plants. , 2007, Annual review of genetics.

[108]  D. Leister,et al.  Analysis of 101 nuclear transcriptomes reveals 23 distinct regulons and their relationship to metabolism, chromosomal gene distribution and co-ordination of nuclear and plastid gene expression. , 2005, Gene.