The Ocean Version of the Lagrangian Analysis Tool LAGRANTO

AbstractThe Lagrangian Analysis Tool (LAGRANTO) is adopted and applied to ECMWF’s latest ocean reanalysis. The primary motivation behind this study is to introduce and document LAGRANTO Ocean (LAGRANTO.ocean) and explore its capabilities in combination with an eddy-permitting ocean reanalysis. The tool allows for flexibly defining starting points, within circles, cylinders, or any user-defined region or volume. LAGRANTO.ocean also offers a sophisticated way to refine a set of computed trajectories according to a wide range of mathematical operations that can be combined into a single refinement criterion. Tools for calculating—for example, along-trajectory cross sections or trajectory densities—are further provided. After introducing the tool, three case studies are presented, which were chosen to reflect a selection of phenomena on different spatial and temporal scales. The case studies also serve as hands-on examples. For the first case study, at the mesoscale, ocean trajectories are computed during the...

[1]  C. Deser,et al.  Understanding the persistence of sea surface temperature anomalies in midlatitudes , 2003 .

[2]  J. C. Swallow,et al.  A neutral-buoyancy float for measuring deep currents , 1955 .

[3]  T. Rossby Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics: Evolution of Lagrangian methods in oceanography , 2007 .

[4]  Larry W. O'Neill,et al.  Satellite Observations of Mesoscale Eddy-Induced Ekman Pumping , 2015 .

[5]  Sebastian Schemm,et al.  The Linkage between the Warm and the Cold Conveyor Belts in an Idealized Extratropical Cyclone , 2014 .

[6]  B. Djath,et al.  Solomon Sea circulation and water mass modifications: response at ENSO timescales , 2012, Ocean Dynamics.

[7]  C. Deser,et al.  A Mechanism for the Recurrence of Wintertime Midlatitude SST Anomalies , 1995 .

[8]  K. Döös,et al.  Lagrangian decomposition of the Deacon Cell , 2008 .

[9]  S. Drijfhout,et al.  Impact of Eddy-Induced Transport on the Lagrangian Structure of the Upper Branch of the Thermohaline Circulation , 2003 .

[10]  Heini Wernli,et al.  An online trajectory module (version 1.0) for the nonhydrostatic numerical weather prediction model COSMO , 2013 .

[11]  Kristian Mogensen,et al.  Surface Wave Effects in the NEMO Ocean Model: Forced and Coupled Experiments , 2015, 1503.07677.

[12]  Russ E. Davis,et al.  LAGRANGIAN OCEAN STUDIES , 1991 .

[13]  D. Thompson,et al.  Observational Evidence of Reemergence in the Extratropical Southern Hemisphere , 2009 .

[14]  K. Döös,et al.  Calculating Lagrangian Trajectories Using Time-Dependent Velocity Fields , 2001 .

[15]  A. Yool,et al.  Role of advection in Arctic Ocean lower trophic dynamics: A modeling perspective , 2013 .

[16]  S. Dye,et al.  On the origin and propagation of Denmark Strait overflow water anomalies in the Irminger Basin , 2015 .

[17]  A. Mariano,et al.  Lagrangian Data in a High Resolution Numerical Simulation of the North Atlantic. I: Comparison with , 2001 .

[18]  A. Sterl,et al.  The ERA‐40 re‐analysis , 2005 .

[19]  P. Ruti,et al.  Observed and Modeled Global Ocean Turbulence Regimes as Deduced from Surface Trajectory Data , 2013 .

[20]  Peter Cornillon,et al.  Air–sea interaction over ocean fronts and eddies , 2008 .

[21]  Petra Seibert Convergence and Accuracy of Numerical Methods for Trajectory Calculations , 1993 .

[22]  S. Rahmstorf Ocean circulation and climate during the past 120,000 years , 2002, Nature.

[23]  Nick Rayner,et al.  EN4: Quality controlled ocean temperature and salinity profiles and monthly objective analyses with uncertainty estimates , 2013 .

[24]  S. Speich,et al.  A global diagnostic of interocean mass transfers , 2001 .

[25]  S. Bacon Decadal variability in the outflow from the Nordic seas to the deep Atlantic Ocean , 1998, Nature.

[26]  H. Wernli,et al.  Warm Conveyor Belts in Idealized Moist Baroclinic Wave Simulations , 2013 .

[27]  Michael Sprenger,et al.  The role of upper‐level dynamics and surface processes for the Pakistan flood of July 2010 , 2013 .

[28]  A. Mahadevan,et al.  Comment on "Eddy/Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Blooms" , 2008, Science.

[29]  L. Beal,et al.  Advective Time Scales of Agulhas Leakage to the North Atlantic in Surface Drifter Observations and the 3D OFES Model , 2011 .

[30]  J. Willis,et al.  Record warming in the South Pacific and western Antarctica associated with the strong central‐Pacific El Niño in 2009–10 , 2010 .

[31]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[32]  Kerstin Jochumsen,et al.  The East Greenland Spill Jet as an important component of the Atlantic Meridional Overturning Circulation , 2014 .

[33]  Jean-Raymond Bidlot,et al.  A Stokes drift approximation based on the Phillips spectrum , 2016, 1601.08092.

[34]  Richard G. Williams Modification of ocean eddies by air-sea interaction , 1988 .

[35]  T. D. Dickey,et al.  Influence of mesoscale eddies on new production in the Sargasso Sea , 1998, Nature.

[36]  Harald Sodemann,et al.  Planning aircraft measurements within a warm conveyor belt , 2014 .

[37]  Bruno Buongiorno Nardelli,et al.  Vortex waves and vertical motion in a mesoscale cyclonic eddy , 2013 .

[38]  Antonello Provenzale,et al.  TRANSPORT BY COHERENT BAROTROPIC VORTICES , 1999 .

[39]  K. Döös,et al.  Dispersion of surface drifters and model-simulated trajectories , 2011 .

[40]  Adrian P. Martin,et al.  The spatial variability of vertical velocity in an Iceland basin eddy dipole , 2013 .

[41]  Heini Wernli,et al.  A Lagrangian‐based analysis of extratropical cyclones. I: The method and some applications , 1997 .

[42]  Øyvind Breivik,et al.  Marine Wind and Wave Height Trends at Different ERA-Interim Forecast Ranges , 2015 .

[43]  P. Richardson Gulf Stream Rings , 1983 .

[44]  Heini Wernli,et al.  A Lagrangian‐based analysis of extratropical cyclones. II: A detailed case‐study , 1997 .

[45]  Camille Li,et al.  Influence of Tropical Pacific Sea Surface Temperature on the Genesis of Gulf Stream Cyclones , 2016 .

[46]  Heini Wernli,et al.  The LAGRANTO Lagrangian analysis tool – version 2.0 , 2015 .

[47]  Bruno Blanke,et al.  Kinematics of the Pacific Equatorial Undercurrent: An Eulerian and Lagrangian Approach from GCM Results , 1997 .

[48]  Dudley Chelton,et al.  Ocean–atmosphere coupling: Mesoscale eddy effects , 2013 .

[49]  Bror Jönsson,et al.  TRACMASS—A Lagrangian Trajectory Model , 2013 .

[50]  K. Myrberg,et al.  A Lagrangian-trajectory study of a gradually mixed estuary , 2011 .

[51]  R. Sutton,et al.  Atmospheric GCM Response to Extratropical SST Anomalies: Synthesis and Evaluation* , 2002 .

[52]  M. Lozier,et al.  No inter-gyre pathway for sea-surface temperature anomalies in the North Atlantic , 2016, Nature Communications.

[53]  Christophe Maisondieu,et al.  Advances in search and rescue at sea , 2012, Ocean Dynamics.

[54]  Jonathan V. Durgadoo,et al.  Advective timescales and pathways of Agulhas leakage , 2013 .

[55]  John C. Lin,et al.  Coupled weather research and forecasting–stochastic time-inverted lagrangian transport (WRF–STILT) model , 2010 .

[56]  C. Frankignoul,et al.  The Persistence of Winter Sea Surface Temperature in the North Atlantic , 2003 .

[57]  A. Molcard,et al.  Modeling jellyfish Pelagia noctiluca transport and stranding in the Ligurian Sea. , 2013, Marine pollution bulletin.

[58]  P. Jones,et al.  The Twentieth Century Reanalysis Project , 2009 .

[59]  D. Rudnick,et al.  Two‐dimensional ageostrophic secondary circulation at ocean fronts due to vertical mixing and large‐scale deformation , 2005 .

[60]  R. Pickart,et al.  Upstream sources of the Denmark Strait Overflow : observations from a high-resolution mooring array , 2016 .

[61]  M. Balmaseda,et al.  The new eddy-permitting ORAP5 ocean reanalysis: description, evaluation and uncertainties in climate signals , 2017, Climate Dynamics.

[62]  Jean-Raymond Bidlot,et al.  Approximate Stokes Drift Profiles in Deep Water , 2014, 1406.5039.

[63]  Nicholas R. Bates,et al.  Eddy/Wind Interactions Stimulate Extraordinary Mid-Ocean Plankton Blooms , 2007, Science.

[64]  Kristian Mogensen,et al.  Arctic sea ice in the global eddy-permitting ocean reanalysis ORAP5 , 2017, Climate Dynamics.

[65]  D. Quadfasel,et al.  Variability of the Denmark Strait overflow: Moored time series from 1996–2011 , 2012 .

[66]  A. Provenzale,et al.  Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics: Particle motion in a sea of eddies , 2007 .

[67]  Camilla Brekke,et al.  Measurement and modeling of oil slick transport , 2016 .

[68]  Joseph H. LaCasce,et al.  Statistics from Lagrangian observations , 2008 .

[69]  H. Wernli,et al.  A Lagrangian Climatology of Tropical Moisture Exports to the Northern Hemispheric Extratropics , 2009 .

[70]  Andreas Schäfler,et al.  Impact of the inflow moisture on the evolution of a warm conveyor belt , 2015 .

[71]  Adrian P. Martin,et al.  Mechanisms for vertical nutrient transport within a North Atlantic mesoscale eddy , 2001 .

[72]  Reto Knutti,et al.  Imprint of Southern Ocean eddies on winds, clouds and rainfall , 2013 .

[73]  M. Allen,et al.  Decadal predictability of North Atlantic sea surface temperature and climate , 1997, Nature.

[74]  S. Riser,et al.  Quasi-Lagrangian structure and variability of the subtropical western North Atlantic circulation , 1983 .

[75]  H. Drange,et al.  Observed sources and variability of Nordic seas overflow , 2009 .

[76]  S. Speich,et al.  The exchange of Intermediate Water in the southeast Atlantic: Water mass transformations diagnosed from the Lagrangian analysis of a regional ocean model , 2012 .

[77]  Thomas W. N. Haine,et al.  Fates and Travel Times of Denmark Strait Overflow Water in the Irminger Basin , 2013 .

[78]  H. Wernli,et al.  A northern hemispheric climatology of cross‐tropopause exchange for the ERA15 time period (1979–1993) , 2003 .

[79]  David A. Siegel,et al.  Bio‐optical footprints created by mesoscale eddies in the Sargasso Sea , 2011 .

[80]  B. Blanke,et al.  A Lagrangian Method to Isolate the Impacts of Mixed Layer Subduction on the Meridional Overturning Circulation in a Numerical Model , 2015 .

[81]  S. Riser,et al.  The Argo Program : observing the global ocean with profiling floats , 2009 .

[82]  M. Banner,et al.  Modeling Wave-Enhanced Turbulence in the Ocean Surface Layer , 1994 .

[83]  Gurvan Madec,et al.  Warm water paths in the equatorial Atlantic as diagnosed with a general circulation model , 1999 .

[84]  Mathew E. Maltrud,et al.  Eulerian and Lagrangian Statistics from Surface Drifters and a High-Resolution POP Simulation in the North Atlantic , 2002 .

[85]  A. Sterl,et al.  Fifteen years of ocean observations with the global Argo array , 2016 .

[86]  N. Gruber,et al.  Response of biological production and air–sea CO2 fluxes to upwelling intensification in the California and Canary Current Systems , 2013 .

[87]  T. M. Johnston,et al.  Frontal dynamics in a California Current System shallow front: 2. Mesoscale vertical velocity , 2010 .

[88]  K. Döös,et al.  Interocean exchange of water masses , 1995 .

[89]  R. Pickart,et al.  The East Greenland Spill Jet , 2005 .