Spectroscopic properties of gallium-rich germano-gallate glasses doped with Tm3+

[1]  M. Dussauze,et al.  Effect of potassium or yttrium introduction in Yb3+-doped germano-gallate glasses on the structural, luminescence properties and fiber processing , 2022, Optical Materials.

[2]  M. Allix,et al.  Glass forming regions, structure and properties of lanthanum barium germanate and gallate glasses , 2021 .

[3]  E. Fargin,et al.  The influence of potassium substitution for barium on the structure and property of silver-doped germano-gallate glasses , 2021 .

[4]  M. Lancry,et al.  Photosensitivity of barium germano-gallate glasses under femtosecond laser direct writing for Mid-IR applications , 2021, Ceramics International.

[5]  L. Canioni,et al.  Heavy-oxide glasses with superior mechanical assets for nonlinear fiber applications in the mid-infrared , 2021 .

[6]  Pengfei Wang,et al.  Tm3+-doped fluorotellurite glass microsphere resonator laser at 2.3  µm. , 2020, Optics letters.

[7]  Changfu Xu,et al.  Increasing ZnF2 content enhancing the near- and mid-infrared emission in Er3+/Yb3+ codoped oxyfluorotellurite glasses with decreased hydroxyl , 2019 .

[8]  Y. Messaddeq,et al.  Extended germano-gallate fiber drawing domain: from germanates to gallates optical fibers , 2019, Optical Materials Express.

[9]  M. Dussauze,et al.  Structure and Properties of Gallium-Rich Sodium Germano-Gallate Glasses , 2018, The Journal of Physical Chemistry C.

[10]  Pan Cheng,et al.  Around 2 μm fluorescence and energy transfer in Tm 3 + /Ho 3 + co-doped tellurite glass , 2018 .

[11]  H. Inoue,et al.  Low phonon energies and wideband optical windows of La2O3-Ga2O3 glasses prepared using an aerodynamic levitation technique , 2017, Scientific Reports.

[12]  Junjie Zhang,et al.  Infrared fluorescence, energy transfer process and quantitative analysis of thulium-doped niobium silicate-germanate glass , 2016 .

[13]  Zhongmin Yang,et al.  Highly Tm3+ doped germanate glass and its single mode fiber for 2.0 μm laser , 2016, Scientific Reports.

[14]  C. K. Jayasankar,et al.  Spectroscopy and radiation trapping of Yb3+ ions in lead phosphate glasses , 2014 .

[15]  J. D. Musgraves,et al.  Influence of Hydroxyl Group on IR Transparency of Tellurite‐Based Glasses , 2014 .

[16]  V. Anjos,et al.  Laser performance parameters of Yb3+ doped UV-transparent phosphate glasses , 2014 .

[17]  Lili Hu,et al.  Spectroscopic properties of thulium ions in bismuth silicate glass , 2012 .

[18]  Lili Hu,et al.  1.8 μm emission of highly thulium doped fluorophosphate glasses , 2010 .

[19]  Lili Hu,et al.  Energy transfer and 1.8 μm emission in Tm3+/Yb3+ codoped lanthanum tungsten tellurite glasses , 2010 .

[20]  M. Ferraris,et al.  Spectroscopy and optical characterization of thulium doped TZN glasses , 2010 .

[21]  A. D. de Camargo,et al.  Energy transfer processes in Yb3+–Tm3+ co-doped sodium alumino-phosphate glasses with improved 1.8 µm emission , 2008 .

[22]  H. Yang,et al.  Near-infrared emissions and quantum efficiencies in Tm3+-doped heavy metal gallate glasses for S- and U-band amplifiers and 1.8 μm infrared laser , 2008 .

[23]  R. Xie,et al.  Red-shift of emission wavelength caused by reabsorption mechanism of europium activated Ca-α-SiAlON ceramic phosphors , 2007 .

[24]  J. Sanghera,et al.  Germanate glass as a window for high energy laser systems. , 2006, Optics express.

[25]  Norman P. Barnes,et al.  Comparison of Tm : ZBLAN and Tm : silica fiber lasers; Spectroscopy and tunable pulsed laser operation around 1.9 μm , 2004 .

[26]  C. K. Jayasankar,et al.  Optical properties of Tm3+ ions in lithium borate glasses , 1996 .

[27]  Georges Boulon,et al.  New laser properties and spectroscopy of orthorhombic crystals YAlO3:Er3+. Intensity luminescence characteristics, stimulated emission, and full set of squared reduced‐matrix elements |〈α[SL] J| |U(t)||α′[S′ L′] J′〉|2 for Er3+ Ions , 1995 .

[28]  C. Merzbacher,et al.  Raman spectroscopic studies of BaOGa2O3GeO2 glasses , 1995 .

[29]  W. H. Dumbaugh,et al.  Gallium Oxide Glasses , 1994 .

[30]  Soga,et al.  Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses. , 1992, Physical review. B, Condensed matter.

[31]  Renata Reisfeld,et al.  Judd-Ofelt parameters and chemical bonding☆ , 1983 .

[32]  Hisayoshi Toratani,et al.  Compositional dependence of nonradiative decay rate in Nd laser glasses , 1982 .

[33]  William F. Krupke,et al.  Induced-emission cross sections in neodymium laser glasses , 1974 .

[34]  D. L. Dexter,et al.  Phonon Sidebands, Multiphonon Relaxation of Excited States, and Phonon-Assisted Energy Transfer between Ions in Solids , 1970 .

[35]  K. Rajnak,et al.  Electronic Energy Levels in the Trivalent Lanthanide Aquo Ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+ , 1968 .

[36]  W. Fowler,et al.  Relation between Absorption and Emission Probabilities in Luminescent Centers in Ionic Solids , 1962 .

[37]  B. Judd,et al.  OPTICAL ABSORPTION INTENSITIES OF RARE-EARTH IONS , 1962 .

[38]  G. S. Ofelt Intensities of Crystal Spectra of Rare‐Earth Ions , 1962 .