Broadcasting Into the Uncertainty: Authentication and Confidentiality by Physical-Layer Processing

The wireless medium offers many opportunities for broadcast communications. However, it also opens the possibility for attackers to eavesdrop the broadcast data or to pretend to be another node or device. These two attacks define the protection goals, namely, confidentiality and authenticity. Traditionally, both are solved by cryptographic approaches exploiting knowledge available in the surrounding infrastructure. The novel communication paradigms for the Internet of Things or cyber-physical systems do not scale with the standard cryptographic approach. Instead it is possible to exploit properties of the underlying physical channel to provide countermeasures against eavesdropping and impersonation attacks. Thereby, the random fading channel induces uncertainty which is detrimental but at the same time also helpful. In this paper, we review and describe a generalized model for physical-layer-based confidential data transmission and wireless authentication. A key role is played by the channel uncertainty and available design dimensions such as time, frequency, and space. We show that wireless authentication and secret-key generation can work in multicarrier and multiple-antenna systems and explain how even outdated channel state information can help to increase the available secure degrees of freedom. This survey focuses on the system design of wireless physical-layer confidentiality and authenticity under channel uncertainty. The insights could lead to a design of practical systems which are preparing the ground for confidentiality and authenticity already on the physical layer of the communication protocol stack.

[1]  Martin E. Hellman,et al.  The Gaussian wire-tap channel , 1978, IEEE Trans. Inf. Theory.

[2]  Shlomo Shamai,et al.  On the Synergistic Benefits of Alternating CSIT for the MISO Broadcast Channel , 2013, IEEE Transactions on Information Theory.

[3]  Eduard A. Jorswieck,et al.  Secrecy Outage in MISO Systems With Partial Channel Information , 2012, IEEE Transactions on Information Forensics and Security.

[4]  Eduard A. Jorswieck,et al.  Secret key generation from reciprocal spatially correlated MIMO channels , 2013, 2013 IEEE Globecom Workshops (GC Wkshps).

[5]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[6]  John S. Baras,et al.  Physical-Layer Authentication , 2008, IEEE Transactions on Information Forensics and Security.

[7]  Larry J. Greenstein,et al.  Fingerprints in the Ether: Using the Physical Layer for Wireless Authentication , 2007, 2007 IEEE International Conference on Communications.

[8]  J. Nicholas Laneman,et al.  Information-spectrum methods for information-theoretic security , 2009, 2009 Information Theory and Applications Workshop.

[9]  Hsuan-Jung Su,et al.  On optimal artificial-noise assisted secure beamforming for the fading eavesdropper channel , 2011, 2011 IEEE 22nd International Symposium on Personal, Indoor and Mobile Radio Communications.

[10]  Didem Kivanc-Tureli,et al.  EPSON: Enhanced Physical Security in OFDM Networks , 2009, 2009 IEEE International Conference on Communications.

[11]  Venkat Anantharam,et al.  Information-theoretic key agreement of multiple terminal: part II: channel model , 2010, IEEE Trans. Inf. Theory.

[12]  Hong Wen Physical Layer Approaches for Securing Wireless Communication Systems , 2013, SpringerBriefs in Computer Science.

[13]  Roy D. Yates,et al.  Secrecy capacity of independent parallel channels , 2009 .

[14]  Steven Kay,et al.  Fundamentals Of Statistical Signal Processing , 2001 .

[15]  A. Lee Swindlehurst,et al.  On the use of artificial interference for secrecy with imperfect CSI , 2011, 2011 IEEE 12th International Workshop on Signal Processing Advances in Wireless Communications.

[16]  Larry J. Greenstein,et al.  Channel-based spoofing detection in frequency-selective rayleigh channels , 2009, IEEE Transactions on Wireless Communications.

[17]  Cheng-Liang Lin,et al.  On Secrecy Capacity of Fast Fading MIMOME Wiretap Channels with Statistical CSIT , 2013, IEEE Transactions on Wireless Communications.

[18]  Larry J. Greenstein,et al.  Using the physical layer for wireless authentication in time-variant channels , 2008, IEEE Transactions on Wireless Communications.

[19]  Larry J. Greenstein,et al.  PHY-Authentication Protocol for Spoofing Detection in Wireless Networks , 2010, 2010 IEEE Global Telecommunications Conference GLOBECOM 2010.

[20]  W. C. Jakes,et al.  Microwave Mobile Communications , 1974 .

[21]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[22]  Hesham El Gamal,et al.  On the Secrecy Capacity of Fading Channels , 2007, ISIT.

[23]  Amir Salman Avestimehr,et al.  Blind wiretap channel with delayed CSIT , 2014, 2014 IEEE International Symposium on Information Theory.

[24]  Shaoquan Jiang Keyless Authentication in a Noisy Model , 2014, IEEE Transactions on Information Forensics and Security.

[25]  Gustavus J. Simmons,et al.  A survey of information authentication , 1988, Proc. IEEE.

[26]  Frédérique E. Oggier,et al.  The secrecy capacity of the MIMO wiretap channel , 2008, ISIT.

[27]  Eduard A. Jorswieck,et al.  Secrecy on the Physical Layer in Wireless Networks , 2010 .

[28]  R. Negi,et al.  Secret communication using artificial noise , 2005, VTC-2005-Fall. 2005 IEEE 62nd Vehicular Technology Conference, 2005..

[29]  Holger Boche,et al.  Majorization and Matrix-Monotone Functions in Wireless Communications , 2007, Found. Trends Commun. Inf. Theory.

[30]  Gregory W. Wornell,et al.  Authentication with distortion criteria , 2005, IEEE Transactions on Information Theory.

[31]  Rudolf Ahlswede,et al.  Common randomness in information theory and cryptography - I: Secret sharing , 1993, IEEE Trans. Inf. Theory.

[32]  Shlomo Shamai,et al.  A Note on the Secrecy Capacity of the Multiple-Antenna Wiretap Channel , 2007, IEEE Transactions on Information Theory.

[33]  Matthieu R. Bloch,et al.  Semi-Blind Key-Agreement over MIMO Fading Channels , 2013, IEEE Transactions on Communications.

[34]  Larry J. Greenstein,et al.  A Physical-Layer Technique to Enhance Authentication for Mobile Terminals , 2008, 2008 IEEE International Conference on Communications.

[35]  Nicola Laurenti,et al.  Physical Layer Authentication over MIMO Fading Wiretap Channels , 2012, IEEE Transactions on Wireless Communications.

[36]  A. Lee Swindlehurst,et al.  Robust Beamforming for Security in MIMO Wiretap Channels With Imperfect CSI , 2010, IEEE Transactions on Signal Processing.

[37]  Shlomo Shamai,et al.  Secrecy Degrees of Freedom of MIMO Broadcast Channels With Delayed CSIT , 2011, IEEE Transactions on Information Theory.

[38]  Nicola Laurenti,et al.  Physical layer authentication over an OFDM fading wiretap channel , 2011, VALUETOOLS.

[39]  Murat Demirbas,et al.  An RSSI-based scheme for sybil attack detection in wireless sensor networks , 2006, 2006 International Symposium on a World of Wireless, Mobile and Multimedia Networks(WoWMoM'06).

[40]  Shlomo Shamai,et al.  Information Theoretic Security , 2009, Found. Trends Commun. Inf. Theory.

[41]  John S. Baras,et al.  Power allocation tradeoffs in multicarrier authentication systems , 2009, 2009 IEEE Sarnoff Symposium.

[42]  Tiejun Lv,et al.  Detecting substitution attacks against non-colluding relays , 2013, 2013 IEEE Global Communications Conference (GLOBECOM).

[43]  G. Caire,et al.  On the capacity of some channels with channel state information , 1998, Proceedings. 1998 IEEE International Symposium on Information Theory (Cat. No.98CH36252).

[44]  Madjid Nakhjiri,et al.  AAA and Network Security for Mobile Access: Radius, Diameter, EAP, PKI and IP Mobility , 2005 .

[45]  Derrick Wing Kwan Ng,et al.  Energy-Efficient Resource Allocation for Secure OFDMA Systems , 2012, IEEE Transactions on Vehicular Technology.

[46]  Eduard A. Jorswieck,et al.  On the Fast Fading Gaussian Wiretap Channel With Statistical Channel State Information at the Transmitter , 2016, IEEE Transactions on Information Forensics and Security.

[47]  Lajos Hanzo,et al.  A Survey on Wireless Security: Technical Challenges, Recent Advances, and Future Trends , 2015, Proceedings of the IEEE.

[48]  Andrea Sgarro,et al.  Informational Divergence Bounds for Authentication Codes , 1990, EUROCRYPT.

[49]  Rohit Negi,et al.  Guaranteeing Secrecy using Artificial Noise , 2008, IEEE Transactions on Wireless Communications.

[50]  Mohammad Reza Aref,et al.  Key Agreement Over Multiple Access Channel , 2011, IEEE Transactions on Information Forensics and Security.

[51]  David Tse,et al.  Channel Identification: Secret Sharing using Reciprocity in Ultrawideband Channels , 2007 .

[52]  Hong Man,et al.  REAM: RAKE receiver enhanced authentication method , 2010, 2010 - MILCOM 2010 MILITARY COMMUNICATIONS CONFERENCE.

[53]  U. Maurer,et al.  Secret key agreement by public discussion from common information , 1993, IEEE Trans. Inf. Theory.

[54]  Wade Trappe,et al.  Achieving Secret Communication for Fast Rayleigh Fading Channels , 2010, IEEE Transactions on Wireless Communications.

[55]  Matthieu R. Bloch,et al.  Physical-Layer Security: From Information Theory to Security Engineering , 2011 .

[56]  Wenliang Du,et al.  Cooperative Key Generation in Wireless Networks , 2012, IEEE Journal on Selected Areas in Communications.

[57]  Gregory W. Wornell,et al.  Secure Transmission With Multiple Antennas I: The MISOME Wiretap Channel , 2010, IEEE Transactions on Information Theory.

[58]  H. Vincent Poor,et al.  Secure Communication Under Channel Uncertainty and Adversarial Attacks , 2015, Proceedings of the IEEE.

[59]  Shlomo Shamai,et al.  Secure Degrees of Freedom of MIMO X-Channels With Output Feedback and Delayed CSIT , 2013, IEEE Transactions on Information Forensics and Security.

[60]  Pritam Mukherjee,et al.  Fading wiretap channel with no CSI anywhere , 2013, 2013 IEEE International Symposium on Information Theory.

[61]  Xianda Zhang,et al.  Secure Relay Beamforming With Imperfect Channel Side Information , 2013, IEEE Transactions on Vehicular Technology.

[62]  Ueli Maurer,et al.  Authentication theory and hypothesis testing , 2000, IEEE Trans. Inf. Theory.

[63]  Xin Wang,et al.  Masked Beamforming for Multiuser MIMO Wiretap Channels with Imperfect CSI , 2012, IEEE Transactions on Wireless Communications.

[64]  Nicola Laurenti,et al.  On the Error Region for Channel Estimation-Based Physical Layer Authentication Over Rayleigh Fading , 2015, IEEE Transactions on Information Forensics and Security.

[65]  Mani Mina,et al.  Short Paper: A Signal Fingerprinting Paradigm for General Physical Layer and Sensor Network Security and Assurance , 2005, First International Conference on Security and Privacy for Emerging Areas in Communications Networks (SECURECOMM'05).

[66]  Shlomo Shamai,et al.  Compound Wiretap Channels , 2009, EURASIP J. Wirel. Commun. Netw..

[67]  Nicola Laurenti,et al.  Secrecy Transmission on Parallel Channels: Theoretical Limits and Performance of Practical Codes , 2014, IEEE Transactions on Information Forensics and Security.

[68]  Aylin Yener,et al.  MIMO Multiple Access Channel With an Arbitrarily Varying Eavesdropper: Secrecy Degrees of Freedom , 2013, IEEE Trans. Inf. Theory.

[69]  Aylin Yener,et al.  MIMO Wiretap Channels With Unknown and Varying Eavesdropper Channel States , 2014, IEEE Transactions on Information Theory.

[70]  Can Emre Koksal,et al.  An information theoretic approach to RF fingerprinting , 2013, 2013 Asilomar Conference on Signals, Systems and Computers.

[71]  Shlomo Shamai,et al.  Secured Communication over Frequency-Selective Fading Channels: A Practical Vandermonde Precoding , 2009, EURASIP J. Wirel. Commun. Netw..

[72]  Wade Trappe,et al.  Information-Theoretically Secret Key Generation for Fading Wireless Channels , 2009, IEEE Transactions on Information Forensics and Security.

[73]  Shlomo Shamai,et al.  On the compound MIMO broadcast channels with confidential messages , 2009, 2009 IEEE International Symposium on Information Theory.

[74]  Ami Wiesel,et al.  On the Gaussian MIMO Wiretap Channel , 2007, 2007 IEEE International Symposium on Information Theory.

[75]  Aydin Sezgin,et al.  Achievable secure degrees of freedom of MISO broadcast channel With alternating CSIT , 2014, 2014 IEEE International Symposium on Information Theory.

[76]  H. Vincent Poor,et al.  Information and inference in the wireless physical layer , 2012, IEEE Wireless Communications.

[77]  Hsiao-Chun Wu,et al.  Physical layer security in wireless networks: a tutorial , 2011, IEEE Wireless Communications.

[78]  Xianbin Wang,et al.  Reliability enhancement for CIR-based physical layer authentication , 2015, Secur. Commun. Networks.

[79]  Nuwan S. Ferdinand,et al.  Effects of Outdated CSI on the Secrecy Performance of MISO Wiretap Channels with Transmit Antenna Selection , 2013, IEEE Communications Letters.

[80]  Alexandre J. Pierrot,et al.  Strongly Secure Communications Over the Two-Way Wiretap Channel , 2010, IEEE Transactions on Information Forensics and Security.

[81]  Shih-Chun Lin,et al.  On Secrecy Capacity of Fast Fading Multiple-Input Wiretap Channels With Statistical CSIT , 2012, IEEE Transactions on Information Forensics and Security.

[82]  Roy D. Yates,et al.  Secret Communication via Multi-antenna Transmission , 2007, 2007 41st Annual Conference on Information Sciences and Systems.

[83]  Gustavus J. Simmons,et al.  Authentication Theory/Coding Theory , 1985, CRYPTO.

[84]  Hsuan-Jung Su,et al.  On Secrecy Rate of the Generalized Artificial-Noise Assisted Secure Beamforming for Wiretap Channels , 2012, IEEE Journal on Selected Areas in Communications.

[85]  F. MacWilliams,et al.  Codes which detect deception , 1974 .

[86]  Alex Reznik,et al.  Extracting Secrecy from Jointly Gaussian Random Variables , 2006, 2006 IEEE International Symposium on Information Theory.

[87]  Imre Csiszár,et al.  Broadcast channels with confidential messages , 1978, IEEE Trans. Inf. Theory.

[88]  Thomas Johansson Lower bounds on the probability of deception in authentication with arbitration , 1994, IEEE Trans. Inf. Theory.

[89]  M. Sion On general minimax theorems , 1958 .

[90]  Mohammad Reza Aref,et al.  Key agreement over multiple access channel using feedback channel , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[91]  Mounir Ghogho,et al.  Secure Communication via Sending Artificial Noise by the Receiver: Outage Secrecy Capacity/Region Analysis , 2012, IEEE Communications Letters.

[92]  A. Lee Swindlehurst,et al.  Utility of beamforming strategies for secrecy in multiuser MIMO wiretap channels , 2009, 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[93]  H. Vincent Poor,et al.  Physical-Layer Secrecy for OFDM Transmissions Over Fading Channels , 2012, IEEE Transactions on Information Forensics and Security.

[94]  Rafael F. Schaefer,et al.  The compound secrecy capacity of a class of non-degraded MIMO Gaussian channels , 2014, 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[95]  Matthieu Bloch,et al.  Secret Sharing over Fast-Fading MIMO Wiretap Channels , 2009, EURASIP J. Wirel. Commun. Netw..

[96]  Bernard P. Zajac Applied cryptography: Protocols, algorithms, and source code in C , 1994 .

[97]  Brian M. Sadler,et al.  MIMO Authentication via Deliberate Fingerprinting at the Physical Layer , 2011, IEEE Transactions on Information Forensics and Security.

[98]  Charles G. Boncelet The NTMAC for authentication of noisy messages , 2006, IEEE Transactions on Information Forensics and Security.

[99]  Yu Liu,et al.  The CRC–NTMAC for Noisy Message Authentication , 2005, IEEE Transactions on Information Forensics and Security.

[100]  S. Watanabe,et al.  Secret Key Agreement From Vector Gaussian Sources by Rate Limited Public Communication , 2011, IEEE Transactions on Information Forensics and Security.

[101]  Matthieu R. Bloch,et al.  Strong Secrecy From Channel Resolvability , 2011, IEEE Transactions on Information Theory.

[102]  Venkat Anantharam,et al.  Information-Theoretic Key Agreement of Multiple Terminals—Part II: Channel Model , 2010, IEEE Transactions on Information Theory.

[103]  H. Vincent Poor,et al.  Authentication Over Noisy Channels , 2008, IEEE Transactions on Information Theory.

[104]  Shih-Chun Lin,et al.  On Ergodic Secrecy Capacity of Multiple Input Wiretap Channel with Statistical CSIT , 2012, ArXiv.

[105]  Rolf Johannesson,et al.  Strengthening Simmons' bound on impersonation , 1991, IEEE Trans. Inf. Theory.

[106]  Eduard A. Jorswieck,et al.  Maximization of worst-case secrecy rates in MIMO wiretap channels , 2010, 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers.

[107]  Jon W. Wallace,et al.  Automatic Secret Keys From Reciprocal MIMO Wireless Channels: Measurement and Analysis , 2010, IEEE Transactions on Information Forensics and Security.

[108]  Eduard A. Jorswieck,et al.  Maximization of worst-case secret key rates in MIMO systems with eavesdropper , 2011, 2011 IEEE GLOBECOM Workshops (GC Wkshps).

[109]  Shlomo Shamai,et al.  A Broadcast Approach for Fading Wiretap Channels , 2014, IEEE Transactions on Information Theory.

[110]  Viiveke Fåk Repeated use of codes which detect deception (Corresp.) , 1979, IEEE Trans. Inf. Theory.

[111]  Wenliang Du,et al.  Key Generation From Wireless Channels , 2013 .

[112]  Richard P. Martin,et al.  Detecting and Localizing Wireless Spoofing Attacks , 2007, 2007 4th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks.

[113]  Matthieu R. Bloch,et al.  Exploiting Partial Channel State Information for Secrecy over Wireless Channels , 2013, IEEE Journal on Selected Areas in Communications.

[114]  Suhas N. Diggavi,et al.  Secret-key generation with correlated sources and noisy channels , 2008, 2008 IEEE International Symposium on Information Theory.

[115]  Derrick Wing Kwan Ng,et al.  Resource allocation for secure OFDMA communication systems , 2011, 2011 Australian Communications Theory Workshop.

[116]  Matthieu R. Bloch,et al.  Wireless Information-Theoretic Security , 2008, IEEE Transactions on Information Theory.

[117]  Rafael F. Schaefer,et al.  The Secrecy Capacity of Compound Gaussian MIMO Wiretap Channels , 2015, IEEE Transactions on Information Theory.

[118]  Eduard A. Jorswieck,et al.  Game Theory for Physical Layer Security on Interference Channels , 2013 .

[119]  Bart Scheers,et al.  Resource Allocation for Parallel Gaussian MIMO Wire-tap Channels , 2010, IEEE Communications Letters.

[120]  Pritam Mukherjee,et al.  MISO broadcast channels with confidential messages and alternating CSIT , 2014, 2014 IEEE International Symposium on Information Theory.

[121]  Eduard A. Jorswieck,et al.  Resource allocation for the wire-tap multi-carrier broadcast channel , 2008, 2008 International Conference on Telecommunications.

[122]  Matthew R. McKay,et al.  Physical layer security with artificial noise: Secrecy capacity and optimal power allocation , 2009, 2009 3rd International Conference on Signal Processing and Communication Systems.

[123]  Akbar Rahman,et al.  Exploiting the physical layer for enhanced security [Security and Privacy in Emerging Wireless Networks] , 2010, IEEE Wireless Communications.

[124]  David R. Cheriton,et al.  Detecting identity-based attacks in wireless networks using signalprints , 2006, WiSe '06.

[125]  Jing Wang,et al.  Optimal Power Allocation for OFDM-Based Wire-Tap Channels with Arbitrarily Distributed Inputs , 2011, WICON.

[126]  Suhas N. Diggavi,et al.  The worst additive noise under a covariance constraint , 2001, IEEE Trans. Inf. Theory.

[127]  Athina P. Petropulu,et al.  On Ergodic Secrecy Rate for Gaussian MISO Wiretap Channels , 2011, IEEE Transactions on Wireless Communications.