Universality for the largest eigenvalue of sample covariance matrices with general population
暂无分享,去创建一个
Wang Zhou | Zhigang Bao | Guangming Pan | Wang Zhou | Z. Bao | G. Pan
[1] J. Lindeberg. Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung , 1922 .
[2] R. Fisher. THE SAMPLING DISTRIBUTION OF SOME STATISTICS OBTAINED FROM NON‐LINEAR EQUATIONS , 1939 .
[3] P. Hsu. ON THE DISTRIBUTION OF ROOTS OF CERTAIN DETERMINANTAL EQUATIONS , 1939 .
[4] Dag Jonsson. Some limit theorems for the eigenvalues of a sample covariance matrix , 1982 .
[5] Y. Yin. Limiting spectral distribution for a class of random matrices , 1986 .
[6] M. L. Eaton. Group invariance applications in statistics , 1989 .
[7] S. Kay. Fundamentals of statistical signal processing: estimation theory , 1993 .
[8] C. Tracy,et al. Level-spacing distributions and the Airy kernel , 1992, hep-th/9211141.
[9] J. W. Silverstein,et al. Analysis of the limiting spectral distribution of large dimensional random matrices , 1995 .
[10] C. Tracy,et al. Mathematical Physics © Springer-Verlag 1996 On Orthogonal and Symplectic Matrix Ensembles , 1995 .
[11] Z. Bai. METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES , A REVIEW , 1999 .
[12] K. Johansson. Shape Fluctuations and Random Matrices , 1999, math/9903134.
[13] I. Johnstone. On the distribution of the largest eigenvalue in principal components analysis , 2001 .
[14] A. Soshnikov. A Note on Universality of the Distribution of the Largest Eigenvalues in Certain Sample Covariance Matrices , 2001, math/0104113.
[15] S. Péché,et al. Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices , 2004, math/0403022.
[16] A. Onatski. A formal statistical test for the number of factors in the approximate factor models , 2006 .
[17] I. Johnstone. High Dimensional Statistical Inference and Random Matrices , 2006, math/0611589.
[18] Noureddine El Karoui. Tracy–Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices , 2005, math/0503109.
[19] D. Paul. ASYMPTOTICS OF SAMPLE EIGENSTRUCTURE FOR A LARGE DIMENSIONAL SPIKED COVARIANCE MODEL , 2007 .
[20] S. Péché. Universality results for largest eigenvalues of some sample covariance matrix ensembles , 2007, 0705.1701.
[21] Alan Edelman,et al. Sample Eigenvalue Based Detection of High-Dimensional Signals in White Noise Using Relatively Few Samples , 2007, IEEE Transactions on Signal Processing.
[22] Z. Bai,et al. METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES, A REVIEW , 2008 .
[23] H. Yau,et al. Wegner estimate and level repulsion for Wigner random matrices , 2008, 0811.2591.
[24] Z. Bai,et al. Central limit theorems for eigenvalues in a spiked population model , 2008, 0806.2503.
[25] A. Onatski. The Tracy–Widom limit for the largest eigenvalues of singular complex Wishart matrices , 2008, 0803.4155.
[26] T. Tao,et al. Random matrices: Universality of local eigenvalue statistics , 2009, 0906.0510.
[27] Horng-Tzer Yau,et al. Local Semicircle Law and Complete Delocalization for Wigner Random Matrices , 2008, 0803.0542.
[28] J. W. Silverstein,et al. Spectral Analysis of Large Dimensional Random Matrices , 2009 .
[29] Debashis Paul,et al. No eigenvalues outside the support of the limiting empirical spectral distribution of a separable covariance matrix , 2009, J. Multivar. Anal..
[30] Noureddine El Karoui,et al. Concentration of measure and spectra of random matrices: Applications to correlation matrices, elliptical distributions and beyond , 2009, 0912.1950.
[31] Jun Yin,et al. The local relaxation flow approach to universality of the local statistics for random matrices , 2009, 0911.3687.
[32] Roberto Garello,et al. Theoretical Performance Analysis of Eigenvalue-based Detection , 2009, ArXiv.
[33] H. Yau,et al. Universality of random matrices and local relaxation flow , 2009, 0907.5605.
[34] A. Onatski. TESTING HYPOTHESES ABOUT THE NUMBER OF FACTORS IN LARGE FACTOR MODELS , 2009 .
[35] S. P'ech'e,et al. The largest eigenvalues of sample covariance matrices for a spiked population: Diagonal case , 2008, 0812.2320.
[36] Horng-Tzer Yau,et al. Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices , 2007, 0711.1730.
[37] Raj Rao Nadakuditi,et al. Fundamental Limit of Sample Generalized Eigenvalue Based Detection of Signals in Noise Using Relatively Few Signal-Bearing and Noise-Only Samples , 2009, IEEE Journal of Selected Topics in Signal Processing.
[38] H. Yau,et al. Bulk universality for generalized Wigner matrices , 2010, 1001.3453.
[39] Jun Yin,et al. Universality for generalized Wigner matrices with Bernoulli distribution , 2010, 1003.3813.
[40] H. Yau,et al. Rigidity of eigenvalues of generalized Wigner matrices , 2010, 1007.4652.
[41] Ke Wang. RANDOM COVARIANCE MATRICES: UNIVERSALITY OF LOCAL STATISTICS OF EIGENVALUES UP TO THE EDGE , 2011, 1104.4832.
[42] M. Y. Mo. Rank 1 real Wishart spiked model , 2011, 1101.5144.
[43] Pascal Bianchi,et al. Performance of Statistical Tests for Single-Source Detection Using Random Matrix Theory , 2009, IEEE Transactions on Information Theory.
[44] Alex Bloemendal,et al. Limits of spiked random matrices II , 2011, 1109.3704.
[45] N. Pillai,et al. Universality of covariance matrices , 2011, 1110.2501.
[46] Wang Zhou,et al. Tracy-Widom law for the extreme eigenvalues of sample correlation matrices , 2011, 1110.5208.
[47] L. Erdős. Universality of Wigner random matrices: a survey of recent results , 2010, 1004.0861.
[48] H. Yau,et al. Spectral Statistics of Erdős-Rényi Graphs II: Eigenvalue Spacing and the Extreme Eigenvalues , 2011, 1103.3869.
[49] Dong Wang. The Largest Eigenvalue of Real Symmetric, Hermitian and Hermitian Self-dual Random Matrix Models with Rank One External Source, Part I , 2010, 1012.4144.
[50] T. Tao,et al. Random covariance matrices: Universality of local statistics of eigenvalues , 2009, 0912.0966.
[51] Cedric E. Ginestet. Spectral Analysis of Large Dimensional Random Matrices, 2nd edn , 2012 .
[52] Jun Yin,et al. Edge universality of correlation matrices , 2011, 1112.2381.
[53] Brendan Farrell,et al. Local Eigenvalue Density for General MANOVA Matrices , 2013 .
[54] Walid Hachem,et al. Statistical Inference in Large Antenna Arrays Under Unknown Noise Pattern , 2013, IEEE Transactions on Signal Processing.
[55] Wang Zhou,et al. LOCAL DENSITY OF THE SPECTRUM ON THE EDGE FOR SAMPLE COVARIANCE MATRICES WITH GENERAL POPULATION , 2013 .
[56] Marcelo J. Moreira,et al. Asymptotic power of sphericity tests for high-dimensional data , 2013, 1306.4867.
[57] H. Yau,et al. Spectral statistics of Erdős–Rényi graphs I: Local semicircle law , 2011, 1103.1919.
[58] Alex Bloemendal,et al. Limits of spiked random matrices I , 2010, Probability Theory and Related Fields.
[59] Jun Yin,et al. A necessary and sufficient condition for edge universality of Wigner matrices , 2012, 1206.2251.
[60] Debashis Paul,et al. Limiting spectral distribution of renormalized separable sample covariance matrices when p/ni → 0 , 2013, J. Multivar. Anal..