Universality for the largest eigenvalue of sample covariance matrices with general population

This paper is aimed at deriving the universality of the largest eigenvalue of a class of high-dimensional real or complex sample covariance matrices of the form $\mathcal{W}_N=\Sigma^{1/2}XX^*\Sigma ^{1/2}$. Here, $X=(x_{ij})_{M,N}$ is an $M\times N$ random matrix with independent entries $x_{ij},1\leq i\leq M,1\leq j\leq N$ such that $\mathbb{E}x_{ij}=0$, $\mathbb{E}|x_{ij}|^2=1/N$. On dimensionality, we assume that $M=M(N)$ and $N/M\rightarrow d\in(0,\infty)$ as $N\rightarrow\infty$. For a class of general deterministic positive-definite $M\times M$ matrices $\Sigma$, under some additional assumptions on the distribution of $x_{ij}$'s, we show that the limiting behavior of the largest eigenvalue of $\mathcal{W}_N$ is universal, via pursuing a Green function comparison strategy raised in [Probab. Theory Related Fields 154 (2012) 341-407, Adv. Math. 229 (2012) 1435-1515] by Erd\H{o}s, Yau and Yin for Wigner matrices and extended by Pillai and Yin [Ann. Appl. Probab. 24 (2014) 935-1001] to sample covariance matrices in the null case ($\Sigma=I$). Consequently, in the standard complex case ($\mathbb{E}x_{ij}^2=0$), combing this universality property and the results known for Gaussian matrices obtained by El Karoui in [Ann. Probab. 35 (2007) 663-714] (nonsingular case) and Onatski in [Ann. Appl. Probab. 18 (2008) 470-490] (singular case), we show that after an appropriate normalization the largest eigenvalue of $\mathcal{W}_N$ converges weakly to the type 2 Tracy-Widom distribution $\mathrm{TW}_2$. Moreover, in the real case, we show that when $\Sigma$ is spiked with a fixed number of subcritical spikes, the type 1 Tracy-Widom limit $\mathrm{TW}_1$ holds for the normalized largest eigenvalue of $\mathcal {W}_N$, which extends a result of F\'{e}ral and P\'{e}ch\'{e} in [J. Math. Phys. 50 (2009) 073302] to the scenario of nondiagonal $\Sigma$ and more generally distributed $X$.

[1]  J. Lindeberg Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung , 1922 .

[2]  R. Fisher THE SAMPLING DISTRIBUTION OF SOME STATISTICS OBTAINED FROM NON‐LINEAR EQUATIONS , 1939 .

[3]  P. Hsu ON THE DISTRIBUTION OF ROOTS OF CERTAIN DETERMINANTAL EQUATIONS , 1939 .

[4]  Dag Jonsson Some limit theorems for the eigenvalues of a sample covariance matrix , 1982 .

[5]  Y. Yin Limiting spectral distribution for a class of random matrices , 1986 .

[6]  M. L. Eaton Group invariance applications in statistics , 1989 .

[7]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[8]  C. Tracy,et al.  Level-spacing distributions and the Airy kernel , 1992, hep-th/9211141.

[9]  J. W. Silverstein,et al.  Analysis of the limiting spectral distribution of large dimensional random matrices , 1995 .

[10]  C. Tracy,et al.  Mathematical Physics © Springer-Verlag 1996 On Orthogonal and Symplectic Matrix Ensembles , 1995 .

[11]  Z. Bai METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES , A REVIEW , 1999 .

[12]  K. Johansson Shape Fluctuations and Random Matrices , 1999, math/9903134.

[13]  I. Johnstone On the distribution of the largest eigenvalue in principal components analysis , 2001 .

[14]  A. Soshnikov A Note on Universality of the Distribution of the Largest Eigenvalues in Certain Sample Covariance Matrices , 2001, math/0104113.

[15]  S. Péché,et al.  Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices , 2004, math/0403022.

[16]  A. Onatski A formal statistical test for the number of factors in the approximate factor models , 2006 .

[17]  I. Johnstone High Dimensional Statistical Inference and Random Matrices , 2006, math/0611589.

[18]  Noureddine El Karoui Tracy–Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices , 2005, math/0503109.

[19]  D. Paul ASYMPTOTICS OF SAMPLE EIGENSTRUCTURE FOR A LARGE DIMENSIONAL SPIKED COVARIANCE MODEL , 2007 .

[20]  S. Péché Universality results for largest eigenvalues of some sample covariance matrix ensembles , 2007, 0705.1701.

[21]  Alan Edelman,et al.  Sample Eigenvalue Based Detection of High-Dimensional Signals in White Noise Using Relatively Few Samples , 2007, IEEE Transactions on Signal Processing.

[22]  Z. Bai,et al.  METHODOLOGIES IN SPECTRAL ANALYSIS OF LARGE DIMENSIONAL RANDOM MATRICES, A REVIEW , 2008 .

[23]  H. Yau,et al.  Wegner estimate and level repulsion for Wigner random matrices , 2008, 0811.2591.

[24]  Z. Bai,et al.  Central limit theorems for eigenvalues in a spiked population model , 2008, 0806.2503.

[25]  A. Onatski The Tracy–Widom limit for the largest eigenvalues of singular complex Wishart matrices , 2008, 0803.4155.

[26]  T. Tao,et al.  Random matrices: Universality of local eigenvalue statistics , 2009, 0906.0510.

[27]  Horng-Tzer Yau,et al.  Local Semicircle Law and Complete Delocalization for Wigner Random Matrices , 2008, 0803.0542.

[28]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .

[29]  Debashis Paul,et al.  No eigenvalues outside the support of the limiting empirical spectral distribution of a separable covariance matrix , 2009, J. Multivar. Anal..

[30]  Noureddine El Karoui,et al.  Concentration of measure and spectra of random matrices: Applications to correlation matrices, elliptical distributions and beyond , 2009, 0912.1950.

[31]  Jun Yin,et al.  The local relaxation flow approach to universality of the local statistics for random matrices , 2009, 0911.3687.

[32]  Roberto Garello,et al.  Theoretical Performance Analysis of Eigenvalue-based Detection , 2009, ArXiv.

[33]  H. Yau,et al.  Universality of random matrices and local relaxation flow , 2009, 0907.5605.

[34]  A. Onatski TESTING HYPOTHESES ABOUT THE NUMBER OF FACTORS IN LARGE FACTOR MODELS , 2009 .

[35]  S. P'ech'e,et al.  The largest eigenvalues of sample covariance matrices for a spiked population: Diagonal case , 2008, 0812.2320.

[36]  Horng-Tzer Yau,et al.  Semicircle law on short scales and delocalization of eigenvectors for Wigner random matrices , 2007, 0711.1730.

[37]  Raj Rao Nadakuditi,et al.  Fundamental Limit of Sample Generalized Eigenvalue Based Detection of Signals in Noise Using Relatively Few Signal-Bearing and Noise-Only Samples , 2009, IEEE Journal of Selected Topics in Signal Processing.

[38]  H. Yau,et al.  Bulk universality for generalized Wigner matrices , 2010, 1001.3453.

[39]  Jun Yin,et al.  Universality for generalized Wigner matrices with Bernoulli distribution , 2010, 1003.3813.

[40]  H. Yau,et al.  Rigidity of eigenvalues of generalized Wigner matrices , 2010, 1007.4652.

[41]  Ke Wang RANDOM COVARIANCE MATRICES: UNIVERSALITY OF LOCAL STATISTICS OF EIGENVALUES UP TO THE EDGE , 2011, 1104.4832.

[42]  M. Y. Mo Rank 1 real Wishart spiked model , 2011, 1101.5144.

[43]  Pascal Bianchi,et al.  Performance of Statistical Tests for Single-Source Detection Using Random Matrix Theory , 2009, IEEE Transactions on Information Theory.

[44]  Alex Bloemendal,et al.  Limits of spiked random matrices II , 2011, 1109.3704.

[45]  N. Pillai,et al.  Universality of covariance matrices , 2011, 1110.2501.

[46]  Wang Zhou,et al.  Tracy-Widom law for the extreme eigenvalues of sample correlation matrices , 2011, 1110.5208.

[47]  L. Erdős Universality of Wigner random matrices: a survey of recent results , 2010, 1004.0861.

[48]  H. Yau,et al.  Spectral Statistics of Erdős-Rényi Graphs II: Eigenvalue Spacing and the Extreme Eigenvalues , 2011, 1103.3869.

[49]  Dong Wang The Largest Eigenvalue of Real Symmetric, Hermitian and Hermitian Self-dual Random Matrix Models with Rank One External Source, Part I , 2010, 1012.4144.

[50]  T. Tao,et al.  Random covariance matrices: Universality of local statistics of eigenvalues , 2009, 0912.0966.

[51]  Cedric E. Ginestet Spectral Analysis of Large Dimensional Random Matrices, 2nd edn , 2012 .

[52]  Jun Yin,et al.  Edge universality of correlation matrices , 2011, 1112.2381.

[53]  Brendan Farrell,et al.  Local Eigenvalue Density for General MANOVA Matrices , 2013 .

[54]  Walid Hachem,et al.  Statistical Inference in Large Antenna Arrays Under Unknown Noise Pattern , 2013, IEEE Transactions on Signal Processing.

[55]  Wang Zhou,et al.  LOCAL DENSITY OF THE SPECTRUM ON THE EDGE FOR SAMPLE COVARIANCE MATRICES WITH GENERAL POPULATION , 2013 .

[56]  Marcelo J. Moreira,et al.  Asymptotic power of sphericity tests for high-dimensional data , 2013, 1306.4867.

[57]  H. Yau,et al.  Spectral statistics of Erdős–Rényi graphs I: Local semicircle law , 2011, 1103.1919.

[58]  Alex Bloemendal,et al.  Limits of spiked random matrices I , 2010, Probability Theory and Related Fields.

[59]  Jun Yin,et al.  A necessary and sufficient condition for edge universality of Wigner matrices , 2012, 1206.2251.

[60]  Debashis Paul,et al.  Limiting spectral distribution of renormalized separable sample covariance matrices when p/ni → 0 , 2013, J. Multivar. Anal..