An Experimental Study of Pyrochlore Solubility in Peralkaline Granitic Melts

Peralkaline rocks (defined by molar (Na + K)/Al > 1) are typically enriched in Nb and halogens (such as F and Cl). They can further be subdivided into silica-saturated (e.g., alkali granites) and silica-undersaturated (e.g., nepheline syenites). The current study investigates the solubility product (Ksp) of pyrochlore, the most important ore mineral for Nb in peralkaline granites. The Ksp of pyrochlore increases strongly with increasing temperature and with decreasing A/CNK (molar Al2O3/CaO+Na2O+K2O). By contrast, the Ksp of pyrochlore is only weakly dependent on the F content of the melt, if F concentrations are greater than 1 wt %. The Ksp values of pyrochlore from this study are compared to those of columbite from both this study and the literature to evaluate the controls on the crystallization of these two Nb minerals for granites in variable composition. In peralkaline granitic melts with A/CNK < 1, the Ksp values of pyrochlore are lower than those of columbite, but in peraluminous melts with A/CNK > 1, the Ksp values of pyrochlore are higher than those of columbite, and in subaluminous melts, the Ksp values of pyrochlore and columbite are almost the same. Thus, for melts with similar concentrations of essential structural constituents (Ca-Na in the case of pyrochlore and Mn in the case of columbite), the solubility experiments explain why pyrochlore is more common in peralkaline granitic systems, whereas columbite is the main Nb-bearing mineral in peraluminous systems. An expression that describes the dependence of logKsp on temperature and A/CNK was obtained using the experimental results from the F-enriched granitic melts:logKsp=(−5.22±0.50)×(1000⁄T)−(1.91±0.16)×A/CNK+(3.60±0.61)R2=0.97 where temperature (T) is in Kelvin (K). Using this expression, the saturation solubility or the crystallization temperature of pyrochlore can be calculated for the differentiation of peralkaline granitic magmas. This equation was used in conjunction with data from natural melt inclusions to evaluate whether these melts could have been pyrochlore-saturated. In some cases, the melts could not have been pyrochlore-saturated at reasonable temperatures, but in other cases, notably the pegmatite melts at Strange Lake, the concentrations of the essential structural constituents of pyrochlore (i.e., Nb, Ca, Na, F) in the melt inclusions are consistent with magmatic pyrochlore saturation.

[1]  E. al.,et al.  Supplemental Material: Quantifying metasomatic high-field-strength and rare-earth element transport from alkaline magmas , 2021, Geology.

[2]  R. Flemming,et al.  An experimental approach to examine fluid-melt interaction and mineralization in rare-metal pegmatites , 2020, American Mineralogist.

[3]  A. Williams-Jones,et al.  Partial melting, fractional crystallisation, liquid immiscibility and hydrothermal mobilisation – A ‘recipe’ for the formation of economic A-type granite-hosted HFSE deposits , 2020 .

[4]  R. Flemming,et al.  Solubility of wodginite, titanowodginite, microlite, pyrochlore, columbite-(Mn) and tantalite-(Mn) in flux-rich haplogranitic melts between 700° and 850 °C and 200 MPa , 2020 .

[5]  Y. Shapovalov,et al.  Dissolution of Pyrochlore and Microlite in Alkaline, Subaluminous, and Peraluminous Granitoid Melts , 2019, Doklady Earth Sciences.

[6]  A. Williams-Jones,et al.  Tracing the evolution of a fertile REE granite by modelling amphibole-melt partitioning, the Strange Lake story , 2019, Chemical Geology.

[7]  T. Andersen,et al.  From Mantle to Motzfeldt: A genetic model for syenite-hosted Ta,Nb-mineralisation , 2019, Ore Geology Reviews.

[8]  A. Williams-Jones,et al.  Closed system fluid-mineral-mediated trace element behaviour in peralkaline rare metal pegmatites: Evidence from Strange Lake , 2019, Chemical Geology.

[9]  F. Holtz,et al.  The effect of disequilibrium crystallization on Nb-Ta fractionation in pegmatites: Constraints from crystallization experiments of tantalite-tapiolite , 2018, American Mineralogist.

[10]  Lauren E. Marbella,et al.  Niobium tungsten oxides for high-rate lithium-ion energy storage , 2018, Nature.

[11]  I. Samson,et al.  Textural Features and Chemical Evolution in Ta-Nb Oxides: Implications for Deuteric Rare-Metal Mineralization in the Yichun Granite-Marginal Pegmatite, Southeastern China , 2018, Economic Geology.

[12]  A. Williams-Jones,et al.  Magmatic evolution and controls on rare metal-enrichment of the Strange Lake A-type peralkaline granitic pluton, Québec-Labrador , 2018 .

[13]  R. Linnen,et al.  Experimental constraints on the effect of phosphorous and boron on Nb and Ta ore formation , 2018 .

[14]  I. Veksler,et al.  Experimental study of trace element distribution between calcite, fluorite and carbonatitic melt in the system CaCO3 + CaF2 + Na2CO3 ± Ca3(PO4)2 at 100 MPa , 2018, Contributions to Mineralogy and Petrology.

[15]  A. M. Larin,et al.  The unique Katugin rare-metal deposit (southern Siberia): Constraints on age and genesis , 2017 .

[16]  A. Williams-Jones,et al.  The amphiboles of the REE-rich A-type peralkaline Strange Lake pluton - fingerprints of magma evolution , 2017 .

[17]  G. Matton,et al.  Columbitization of fluorcalciopyrochlore by hydrothermalism at the Saint-Honoré alkaline complex, Québec (Canada) : new insights on halite in carbonatites , 2017 .

[18]  A. Williams-Jones,et al.  Fluid evolution in the Strange Lake granitic pluton, Canada: Implications for HFSE mobilisation , 2016 .

[19]  C. Spandler,et al.  Geology and genesis of the Toongi rare metal (Zr, Hf, Nb, Ta, Y and REE) deposit, NSW, Australia, and implications for rare metal mineralization in peralkaline igneous rocks , 2016, Contributions to Mineralogy and Petrology.

[20]  A. Gysi,et al.  Lithogeochemical Vectors for Hydrothermal Processes in the Strange Lake Peralkaline Granitic REE-Zr-Nb Deposit , 2016 .

[21]  Kui-Feng Yang,et al.  The giant Bayan Obo REE-Nb-Fe deposit, China: Controversy and ore genesis , 2016 .

[22]  A. Williams-Jones,et al.  Petrogenesis of the Nechalacho Layered Suite, Canada: Magmatic Evolution of a REE–Nb-rich Nepheline Syenite Intrusion , 2016 .

[23]  Hui Zhang,et al.  The effect of phosphorus on manganocolumbite and mangaotantalite solubility in peralkaline to peraluminous granitic melts , 2016 .

[24]  R. Flemming,et al.  Hydrothermal Synthesis of Columbite-(Mn), Tantalite-(Mn), Hafnon, and Zircon At 800–850 °C and 200 MPa , 2015 .

[25]  B. Moine,et al.  Evidence for Nb2+ and Ta3+ in silicate melts under highly reducing conditions: A XANES study , 2015 .

[26]  T. Salova,et al.  Solubility of ZrO2, HfO2, Ta2O5, Nb2O5, and H2O + H2 in fluid-saturated haplogranite melt at 100 MPa, 800°C, and variable redox conditions , 2015, Geochemistry International.

[27]  J. Kynický,et al.  The genesis of Zr–Nb–REE mineralisation at Khalzan Buregte (Western Mongolia) reconsidered , 2015 .

[28]  Y. Thibault,et al.  Effects of fluorine on the solubilities of Nb, Ta, Zr and Hf minerals in highly fluxed water-saturated haplogranitic melts , 2015 .

[29]  G. Simandl,et al.  Geology, market and supply chain of niobium and tantalum—a review , 2014, Mineralium Deposita.

[30]  A. Williams-Jones,et al.  Fluoride-silicate melt immiscibility and its role in REE ore formation: Evidence from the Strange Lake rare metal deposit, Quebec-Labrador, Canada , 2014 .

[31]  Wei-dong Sun,et al.  Geochemistry of magmatic and hydrothermal zircon from the highly evolved Baerzhe alkaline granite: implications for Zr–REE–Nb mineralization , 2014, Mineralium Deposita.

[32]  A. Gysi,et al.  Hydrothermal mobilization of pegmatite-hosted REE and Zr at Strange Lake, Canada: A reaction path model , 2013 .

[33]  R. Santos,et al.  The Catalão I niobium deposit, central Brazil: Resources, geology and pyrochlore chemistry , 2011 .

[34]  R. Linnen,et al.  Influence of fluorine on the solubility of manganotantalite (MnTa2O6) and manganocolumbite (MnNb2O6) in granitic melts — An experimental study , 2011 .

[35]  F. Holtz,et al.  Solubility of manganotantalite, zircon and hafnon in highly fluxed peralkaline to peraluminous pegmatitic melts , 2010 .

[36]  V. Chevychelov,et al.  Solubility of columbite, (Mn, Fe)(Nb, Ta)2O6, in granitoid and alkaline melts at 650–850°C and 30–400 MPa: An experimental investigation , 2010 .

[37]  R. Linnen,et al.  Solubility of manganotantalite and manganocolumbite in pegmatitic melts , 2010 .

[38]  J. Frantz,et al.  THE WORLD-CLASS Sn, Nb, Ta, F (Y, REE, Li) DEPOSIT AND THE MASSIVE CRYOLITE ASSOCIATED WITH THE ALBITE-ENRICHED FACIES OF THE MADEIRA A-TYPE GRANITE, PITINGA MINING DISTRICT, AMAZONAS STATE, BRAZIL , 2009 .

[39]  D. Küster Granitoid-hosted Ta mineralization in the Arabian–Nubian Shield: Ore deposit types, tectono-metallogenetic setting and petrogenetic framework , 2009 .

[40]  S. Salvi,et al.  Textural Features and Chemical Evolution in Tantalum Oxides: Magmatic Versus Hydrothermal Origins for Ta Mineralization in the Tanco Lower Pegmatite, Manitoba, Canada , 2007 .

[41]  S. Salvi,et al.  Alteration, HFSE mineralisation and hydrocarbon formation in peralkaline igneous systems: Insights from the Strange Lake Pluton, Canada , 2006 .

[42]  R. Linnen The effect of water on accessory phase solubility in subaluminous and peralkaline granitic melts , 2005 .

[43]  H. Behrens,et al.  Water solubility in trachytic melts , 2004 .

[44]  B. Kjarsgaard,et al.  Solubility of niobium in the system CaCO3–CaF2–NaNbO3 at 0.1 GPa pressure: implications for the crystallization of pyrochlore from carbonatite magma , 2004 .

[45]  D. Baker,et al.  Thermodynamic analysis of the system Na2O-K2O-CaO-Al2O3-SiO2-H2O-F2O−1: Stability of fluorine-bearing minerals in felsic igneous suites , 2004 .

[46]  R. Linnen,et al.  A filler-rod technique for controlling redox conditions in cold-seal pressure vessels , 2003 .

[47]  R. Trumbull,et al.  Zr-Nb-REE Mineralization in Peralkaline Granites from the Amis Complex, Brandberg (Namibia): Evidence for Magmatic Pre-enrichment from Melt Inclusions , 2002 .

[48]  R. Macdonald,et al.  Phase relations of peralkaline silicic magmas and petrogenetic implications. , 2001 .

[49]  R. Trumbull,et al.  Petrogenesis and 40Ar/39Ar Geochronology of the Brandberg Complex, Namibia: Evidence for a Major Mantle Contribution in Metaluminous and Peralkaline Granites , 2000 .

[50]  S. Salvi,et al.  Hydrothermal Mobilization of High Field Strength Elements in Alkaline Igneous Systems: Evidence from the Tamazeght Complex (Morocco) , 2000 .

[51]  R. Linnen The solubility of Nb-Ta-Zr-Hf-W in granitic melts with Li and Li + F; constraints for mineralization in rare metal granites and pegmatites , 1998 .

[52]  D. Baker,et al.  CHEMICAL CONTROLS ON THE SOLUBILITY OF ZR-BEARING PHASES IN SIMPLIFIED PERALKALINE MELTS AND APPLICATION TO THE STRANGE LAKE INTRUSION, QUEBEC : LABRA DOR , 1998 .

[53]  R. A. Gault,et al.  Normandite, the Ti-analogue of lavenite, from Mont Saint-Hilaire, Quebec , 1997 .

[54]  H. Keppler,et al.  Columbite solubility in granitic melts: consequences for the enrichment and fractionation of Nb and Ta in the Earth's crust , 1997 .

[55]  Randy R. Miller,et al.  UPb zircon age of the Strange Lake peralkaline complex: implications for Mesoproterozoic peralkaline magmatism in north-central Labrador , 1997 .

[56]  S. Salvi,et al.  Fischer-Tropsch synthesis of hydrocarbons during sub-solidus alteration of the Strange Lake peralkaline granite, Quebec/Labrador, Canada , 1997 .

[57]  D. London,et al.  Optimizing the electron microprobe analysis of hydrous alkali aluminosilicate glasses , 1996 .

[58]  S. Salvi,et al.  The role of hydrothermal processes in concentrating high-field strength elements in the Strange Lake peralkaline complex, northeastern Canada , 1996 .

[59]  S. Salvi,et al.  Zirconosilicate phase relations in the Strange Lake (Lac Brisson) pluton, Quebec-Labrador, Canada , 1995 .

[60]  V. A. Troitsky,et al.  The peralkaline granite-related Khaldzan-Buregtey rare metal (Zr, Nb, REE) deposit, western Mongolia , 1995 .

[61]  G. Partington,et al.  A review of the geology, mineralization, and geochronology of the Greenbushes Pegmatite, Western Australia , 1995 .

[62]  A. Williams-Jones,et al.  The role of magmatic and hydrothermal processes in the chemical evolution of the Strange Lake plutonic complex, Québec-Labrador , 1994 .

[63]  D. London,et al.  Behavior and effects of phosphorus in the system Na2O−K2O−Al2O3−SiO2−P2O5−H2O at 200 MPa(H2O) , 1993 .

[64]  J. Gittins,et al.  Pyrochlore crystallization in carbonatites; the role of fluorine , 1993 .

[65]  H. Keppler Influence of fluorine on the enrichment of high field strength trace elements in granitic rocks , 1993 .

[66]  S. Salvi,et al.  Reduced orthomagmatic C-O-H-N-NaCl fluids in the Strange Lake rare-metal granitic complex, Quebec/Labrador, Canada , 1992 .

[67]  Henning Sørrensen Agpaitic nepheline syenites: a potential source of rare elements , 1992 .

[68]  T. Birkett,et al.  Zirconium-bearing minerals of the Strange Lake intrusive complex, Quebec-Labrador , 1992 .

[69]  S. Salvi,et al.  The role of hydrothermal processes in the granite-hosted Zr, Y, REE deposit at Strange Lake, Quebec/Labrador: Evidence from fluid inclusions , 1990 .

[70]  D. Roy,et al.  Evolution du Complexe Alcalin de St.-Honoré (Québec) apres sa Mise en Place , 1983 .

[71]  D. Burt Acidity - salinity diagrams - application to greisen and porphyry deposits , 1981 .

[72]  D. Manning The effect of fluorine on liquidus phase relationships in the system Qz-Ab-Or with excess water at 1 kb , 1981 .