Perpetuality and Uniform Normalization

We define a perpetual one-step reduction strategy which enables one to construct minimal (w.r.t. Levy's ordering ⊴ on reductions) infinite reductions in Conditional Orthogonal Expression Reduction Systems. We use this strategy to derive two characterizations of perpetual redexes, i.e., redexes whose contractions retain the existence of infinite reductions. These characterizations generalize existing related criteria for perpetuality of redexes. We give a number of applications of our results, demonstrating their usefulness. In particular, we prove equivalence of weak and strong normalization (the uniform normalization property) for various restricted λ-calculi, which cannot be derived from previously known perpetuality criteria.

[1]  John R. W. Glauert,et al.  Minimal Relative Normalization in Orthogonal Expression Reduction Systems , 1996, FSTTCS.

[2]  Zurab Khasidashvili The Longest Perpetual Reductions in Orthogonal Expression Reduction Systems , 1994, LFCS.

[3]  F. vanRaamsdonk,et al.  Weak orthogonality implies confluence: the higher-order case , 1994 .

[4]  Robert Pieter Nederpelt Lazarom Strong normalization in a typed lambda calculus with lambda structured types , 1973 .

[5]  Vincent van Oostrom,et al.  Combinatory Reduction Systems: Introduction and Survey , 1993, Theor. Comput. Sci..

[6]  David A. Plaisted,et al.  Polynomial Time Termination and Constraint Satisfaction Tests , 1993, RTA.

[7]  Jan Willem Klop,et al.  Term Rewriting Systems: From Church-Rosser to Knuth-Bendix and Beyond , 1990, ICALP.

[8]  Jean-Jacques Lévy,et al.  Computations in Orthogonal Rewriting Systems, II , 1991, Computational Logic - Essays in Honor of Alan Robinson.

[9]  Zurab Khasidashvili The Church-rosser theorem in orthogonal combinatory reduction systems , 1991 .

[10]  CNRSCampus Scienti,et al.  The Conservation Theorem Revisited , 1993 .

[11]  Takuya Kon-no,et al.  Transactions of the American Mathematical Society , 1996 .

[12]  J. Roger Hindley,et al.  To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus, and Formalism , 1980 .

[13]  Zurab Khasidashvili On Higher Order Recursive Program Schemes , 1994, CAAP.

[14]  Benedetto Intrigila,et al.  The Ant-Lion Paradigm for Strong Normalization , 1994, Inf. Comput..

[15]  Tobias Nipkow Orthogonal Higher-Order Rewrite Systems are Confluent , 1993, TLCA.

[16]  Gordon D. Plotkin,et al.  Call-by-Name, Call-by-Value and the lambda-Calculus , 1975, Theor. Comput. Sci..

[17]  F. Raamsdonk Confluence and Normalisation of Higher-Order Rewriting , 1996 .

[18]  Zurab Khasidashvili Perpetuality and Strong Normalization in Orthogonal Term Rewriting Systems , 1994, STACS.

[19]  Vincent van Oostrom,et al.  Weak Orthogonality Implies Con(cid:2)uence(cid:3) the Higher(cid:4)Order Case , 2011 .

[20]  Gamini Salgado,et al.  The ‘free’ university , 1969 .

[21]  Furio Honsell,et al.  Some Results on the Full Abstraction Problem for Restricted Lambda Calculi , 1993, MFCS.

[22]  Morten Heine Ssrensen Properties of Innnite Reduction Paths in Untyped -calculus , 2022 .

[23]  A. Church,et al.  Some properties of conversion , 1936 .

[24]  Jan A. Bergstra,et al.  Strong Normalization and Perpetual Reductions in the Lambda Calculus , 1982, J. Inf. Process. Cybern..

[25]  Jan A. Bergstra,et al.  Degrees, reductions and representability in the lambda calculus , 1976 .

[26]  Jan Willem Klop,et al.  Combinatory reduction systems , 1980 .

[27]  Michael J. O'Donnell,et al.  Computing in systems described by equations , 1977, Lecture Notes in Computer Science.

[28]  Vincent van Oostrom,et al.  Context-sensitive conditional expression reduction systems , 1995, Electron. Notes Theor. Comput. Sci..

[29]  Viggo Stoltenberg-hansen,et al.  In: Handbook of Logic in Computer Science , 1995 .

[30]  Bernhard Gramlich,et al.  Termination and confluence: properties of structured rewrite systems , 1996 .

[31]  V. van Oostrom,et al.  Confluence for Abstract and Higher-Order Rewriting , 1994 .

[32]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .