Genetic feature selection to optimally detect P300 in brain computer interfaces
暂无分享,去创建一个
[1] I. Introducción,et al. Interfaces Cerebro Computadora: Definición, Tipos y Estado Actual , 2007 .
[2] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[3] Amparo Alonso-Betanzos,et al. A New Wrapper Method for Feature Subset Selection , 2005, ESANN.
[4] R. Fazel-Rezai,et al. P300 wave feature extraction: preliminary results , 2005, Canadian Conference on Electrical and Computer Engineering, 2005..
[5] Michael A. Saunders,et al. Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..
[6] Ricardo Chavarriaga,et al. Non-Invasive Brain-Machine Interaction , 2008, Int. J. Pattern Recognit. Artif. Intell..
[7] Philippe C. Baveye,et al. Alleviation of an indeterminacy problem affecting two classical iterative image thresholding algorithms , 2006, Int. J. Pattern Recognit. Artif. Intell..
[8] Ron Kohavi,et al. Wrappers for Feature Subset Selection , 1997, Artif. Intell..
[9] E. Donchin,et al. Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. , 1988, Electroencephalography and clinical neurophysiology.
[10] Li Zhuo,et al. A genetic algorithm based wrapper feature selection method for classification of hyperspectral images using support vector machine , 2008, Geoinformatics.
[11] T. Hinterberger,et al. Automated EEG feature selection for brain computer interfaces , 2003, First International IEEE EMBS Conference on Neural Engineering, 2003. Conference Proceedings..