Zero-Load Stability of Rotating Externally Pressurized Gas-Lubricated Journal Bearings

A small eccentricity analysis was performed for a bearing having two feeding planes, each of which is assumed to be a line source. Numerical results were obtained for a range of bearing number, pressure ratio, feeding parameter, and orifice recess volume by means of a digital computer. Steady-state load and attitude angle were obtained, as well as stability data. Stability decreased markedly with increasing recess volume; moreover, for large recess volume and low bearing number, an increase in pressure ratio decreased stability. There was no correlation between stability and steady-state attitude angle for any of the cases studied. Fair agreement was obtained with available experimental data.