A finite element framework for some mimetic finite difference discretizations
暂无分享,去创建一个
Ludmil T. Zikatanov | Xiaozhe Hu | Francisco José Gaspar | Carmen Rodrigo | L. Zikatanov | C. Rodrigo | F. Gaspar | Xiaozhe Hu
[1] Jose L. Gracia,et al. Fourier Analysis for Multigrid Methods on Triangular Grids , 2009, SIAM J. Sci. Comput..
[2] Gianmarco Manzini,et al. Mimetic finite difference method , 2014, J. Comput. Phys..
[3] F. Brezzi,et al. Basic principles of Virtual Element Methods , 2013 .
[4] Konstantin Lipnikov,et al. Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..
[5] Y. Kuznetsov,et al. New mixed finite element method on polygonal and polyhedral meshes , 2005 .
[6] Carmen Rodrigo,et al. On geometric multigrid methods for triangular grids using three-coarsening strategy , 2009 .
[7] Mary F. Wheeler,et al. A mortar mimetic finite difference method on non-matching grids , 2005, Numerische Mathematik.
[8] Richard S. Falk,et al. Basic principles of mixed Virtual Element Methods , 2014 .
[9] Franco Brezzi,et al. The Hitchhiker's Guide to the Virtual Element Method , 2014 .
[10] P. Raviart,et al. A mixed finite element method for 2-nd order elliptic problems , 1977 .
[11] M. Shashkov. Conservative Finite-Difference Methods on General Grids , 1996 .
[12] J. David Moulton,et al. Convergence of mimetic finite difference discretizations of the diffusion equation , 2001, J. Num. Math..
[13] Cornelis W. Oosterlee,et al. Local Fourier analysis for multigrid with overlapping smoothers applied to systems of PDEs , 2011, Numer. Linear Algebra Appl..
[14] S. Sivaloganathan,et al. The use of local mode analysis in the design and comparison of multigrid methods , 1991 .
[15] P. N. Vabishchevich,et al. Finite-difference Approximation of Mathematical Physics Problems on Irregular Grids , 2005 .
[16] Jinchao Xu,et al. Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..
[17] D. Brandt,et al. Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .
[18] Mikhail Shashkov,et al. Solving Diffusion Equations with Rough Coefficients in Rough Grids , 1996 .
[19] Carmen Rodrigo,et al. Multigrid fourier analysis on semi‐structured anisotropic meshes for vector problems , 2010 .
[20] A. Bossavit. Discretization of Electromagnetic Problems: The “Generalized Finite Differences” Approach , 2005 .
[21] Douglas N. Arnold,et al. Multigrid in H (div) and H (curl) , 2000, Numerische Mathematik.
[22] P. Wesseling. An Introduction to Multigrid Methods , 1992 .
[23] Carmen Rodrigo,et al. On a local Fourier analysis for overlapping block smoothers on triangular grids , 2015 .
[24] J. M. Hyman,et al. Mimetic discretizations for Maxwell equations and the equations of magnetic diffusion , 1998 .
[25] M. Shashkov,et al. The Numerical Solution of Diffusion Problems in Strongly Heterogeneous Non-isotropic Materials , 1997 .
[26] Gianmarco Manzini,et al. The Mimetic Finite Difference Method for Elliptic Problems , 2014 .
[27] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[28] Justin W. L. Wan,et al. Practical Fourier analysis for multigrid methods , 2007, Math. Comput..
[29] M. Shashkov,et al. A Local Support-Operators Diffusion Discretization Scheme for Quadrilateralr-zMeshes , 1998 .
[31] Ulrich Rüde,et al. Optimization of the multigrid-convergence rate on semi-structured meshes by local Fourier analysis , 2013, Comput. Math. Appl..
[32] Mikhail Shashkov,et al. A tensor artificial viscosity using a mimetic finite difference algorithm , 2001 .
[33] M. Shashkov,et al. A discrete operator calculus for finite difference approximations , 2000 .
[34] S. B. Atienza-Samols,et al. With Contributions by , 1978 .
[35] Jinchao Xu,et al. Nodal Auxiliary Space Preconditioning in H(curl) and H(div) Spaces , 2007, SIAM J. Numer. Anal..
[36] Ralf Hiptmair,et al. Dispersion analysis of plane wave discontinuous Galerkin methods , 2014 .
[37] Wolfgang Joppich,et al. Practical Fourier Analysis for Multigrid Methods , 2004 .
[38] Y. Kuznetsov,et al. Mixed Finite Element Method on Polygonal and Polyhedral Meshes , 2003 .
[39] J. Molenaar,et al. A two-grid analysis of the combination of mixed finite elements and Vanka-type relaxation , 1991 .
[40] Jose L. Gracia,et al. Distributive smoothers in multigrid for problems with dominating grad–div operators , 2008, Numer. Linear Algebra Appl..
[41] Panayot S. Vassilevski,et al. Exact de Rham Sequences of Spaces Defined on Macro-Elements in Two and Three Spatial Dimensions , 2008, SIAM J. Sci. Comput..
[42] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[43] Panayot S. Vassilevski,et al. Element agglomeration coarse Raviart-Thomas spaces with improved approximation properties , 2012, Numer. Linear Algebra Appl..
[44] Panayot S. Vassilevski,et al. The Construction of the Coarse de Rham Complexes with Improved Approximation Properties , 2014, Comput. Methods Appl. Math..