A finite element framework for some mimetic finite difference discretizations

In this work we derive equivalence relations between mimetic finite difference schemes on simplicial grids and modified Nedelec-Raviart-Thomas finite element methods for model problems in H ( curl ) and H ( div ) . This provides a simple and transparent way to analyze such mimetic finite difference discretizations using the well-known results from finite element theory. The finite element framework that we develop is also crucial for the design of efficient multigrid methods for mimetic finite difference discretizations, since it allows us to use canonical inter-grid transfer operators arising from the finite element framework. We provide special Local Fourier Analysis and numerical results to demonstrate the efficiency of such multigrid methods.

[1]  Jose L. Gracia,et al.  Fourier Analysis for Multigrid Methods on Triangular Grids , 2009, SIAM J. Sci. Comput..

[2]  Gianmarco Manzini,et al.  Mimetic finite difference method , 2014, J. Comput. Phys..

[3]  F. Brezzi,et al.  Basic principles of Virtual Element Methods , 2013 .

[4]  Konstantin Lipnikov,et al.  Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..

[5]  Y. Kuznetsov,et al.  New mixed finite element method on polygonal and polyhedral meshes , 2005 .

[6]  Carmen Rodrigo,et al.  On geometric multigrid methods for triangular grids using three-coarsening strategy , 2009 .

[7]  Mary F. Wheeler,et al.  A mortar mimetic finite difference method on non-matching grids , 2005, Numerische Mathematik.

[8]  Richard S. Falk,et al.  Basic principles of mixed Virtual Element Methods , 2014 .

[9]  Franco Brezzi,et al.  The Hitchhiker's Guide to the Virtual Element Method , 2014 .

[10]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[11]  M. Shashkov Conservative Finite-Difference Methods on General Grids , 1996 .

[12]  J. David Moulton,et al.  Convergence of mimetic finite difference discretizations of the diffusion equation , 2001, J. Num. Math..

[13]  Cornelis W. Oosterlee,et al.  Local Fourier analysis for multigrid with overlapping smoothers applied to systems of PDEs , 2011, Numer. Linear Algebra Appl..

[14]  S. Sivaloganathan,et al.  The use of local mode analysis in the design and comparison of multigrid methods , 1991 .

[15]  P. N. Vabishchevich,et al.  Finite-difference Approximation of Mathematical Physics Problems on Irregular Grids , 2005 .

[16]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[17]  D. Brandt,et al.  Multi-level adaptive solutions to boundary-value problems math comptr , 1977 .

[18]  Mikhail Shashkov,et al.  Solving Diffusion Equations with Rough Coefficients in Rough Grids , 1996 .

[19]  Carmen Rodrigo,et al.  Multigrid fourier analysis on semi‐structured anisotropic meshes for vector problems , 2010 .

[20]  A. Bossavit Discretization of Electromagnetic Problems: The “Generalized Finite Differences” Approach , 2005 .

[21]  Douglas N. Arnold,et al.  Multigrid in H (div) and H (curl) , 2000, Numerische Mathematik.

[22]  P. Wesseling An Introduction to Multigrid Methods , 1992 .

[23]  Carmen Rodrigo,et al.  On a local Fourier analysis for overlapping block smoothers on triangular grids , 2015 .

[24]  J. M. Hyman,et al.  Mimetic discretizations for Maxwell equations and the equations of magnetic diffusion , 1998 .

[25]  M. Shashkov,et al.  The Numerical Solution of Diffusion Problems in Strongly Heterogeneous Non-isotropic Materials , 1997 .

[26]  Gianmarco Manzini,et al.  The Mimetic Finite Difference Method for Elliptic Problems , 2014 .

[27]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[28]  Justin W. L. Wan,et al.  Practical Fourier analysis for multigrid methods , 2007, Math. Comput..

[29]  M. Shashkov,et al.  A Local Support-Operators Diffusion Discretization Scheme for Quadrilateralr-zMeshes , 1998 .

[31]  Ulrich Rüde,et al.  Optimization of the multigrid-convergence rate on semi-structured meshes by local Fourier analysis , 2013, Comput. Math. Appl..

[32]  Mikhail Shashkov,et al.  A tensor artificial viscosity using a mimetic finite difference algorithm , 2001 .

[33]  M. Shashkov,et al.  A discrete operator calculus for finite difference approximations , 2000 .

[34]  S. B. Atienza-Samols,et al.  With Contributions by , 1978 .

[35]  Jinchao Xu,et al.  Nodal Auxiliary Space Preconditioning in H(curl) and H(div) Spaces , 2007, SIAM J. Numer. Anal..

[36]  Ralf Hiptmair,et al.  Dispersion analysis of plane wave discontinuous Galerkin methods , 2014 .

[37]  Wolfgang Joppich,et al.  Practical Fourier Analysis for Multigrid Methods , 2004 .

[38]  Y. Kuznetsov,et al.  Mixed Finite Element Method on Polygonal and Polyhedral Meshes , 2003 .

[39]  J. Molenaar,et al.  A two-grid analysis of the combination of mixed finite elements and Vanka-type relaxation , 1991 .

[40]  Jose L. Gracia,et al.  Distributive smoothers in multigrid for problems with dominating grad–div operators , 2008, Numer. Linear Algebra Appl..

[41]  Panayot S. Vassilevski,et al.  Exact de Rham Sequences of Spaces Defined on Macro-Elements in Two and Three Spatial Dimensions , 2008, SIAM J. Sci. Comput..

[42]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[43]  Panayot S. Vassilevski,et al.  Element agglomeration coarse Raviart-Thomas spaces with improved approximation properties , 2012, Numer. Linear Algebra Appl..

[44]  Panayot S. Vassilevski,et al.  The Construction of the Coarse de Rham Complexes with Improved Approximation Properties , 2014, Comput. Methods Appl. Math..