Transient Performance Analysis of the $\ell _1$-RLS

The recursive least-squares algorithm with <inline-formula><tex-math notation="LaTeX">$\ell _1$</tex-math></inline-formula>-norm regularization (<inline-formula><tex-math notation="LaTeX">$\ell _1$</tex-math></inline-formula>-RLS) exhibits excellent performance in terms of convergence rate and steady-state error in identification of sparse systems. Nevertheless few works have studied its stochastic behavior, in particular its transient performance. In this letter, we derive analytical models of the transient behavior of the <inline-formula><tex-math notation="LaTeX">$\ell _1$</tex-math></inline-formula>-RLS in the mean and mean-square error sense. Simulation results illustrate the accuracy of these models.

[1]  S. Mukhopadhyay,et al.  Robust adaptive filtering via convex combination of l0-RLS adaptive filters , 2018, 2018 IEEE International Symposium on Circuits and Systems (ISCAS).

[2]  Eweda Eweda,et al.  Stochastic Analysis of the Recursive Least Squares Algorithm for Cyclostationary Colored Inputs , 2020, IEEE Transactions on Signal Processing.

[3]  Konstantinos Pelekanakis,et al.  Adaptive Sparse Channel Estimation under Symmetric alpha-Stable Noise , 2014, IEEE Transactions on Wireless Communications.

[4]  Paulo Sergio Ramirez,et al.  Fundamentals of Adaptive Filtering , 2002 .

[5]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[6]  Ender M. Eksioglu,et al.  Sparsity regularised recursive least squares adaptive filtering , 2011 .

[7]  Simon Haykin,et al.  Adaptive filter theory (2nd ed.) , 1991 .

[8]  Sheng Chen,et al.  Zero-Attracting Recursive Least Squares Algorithms , 2017, IEEE Transactions on Vehicular Technology.

[9]  Vahid Tarokh,et al.  SPARLS: The Sparse RLS Algorithm , 2010, IEEE Transactions on Signal Processing.

[10]  K. J. Ray Liu,et al.  Decentralized Sparse Multitask RLS Over Networks , 2017, IEEE Transactions on Signal Processing.

[11]  Sheng Zhang,et al.  Transient analysis of zero attracting NLMS algorithm without Gaussian inputs assumption , 2014, Signal Process..

[12]  Yuriy V. Zakharov,et al.  DCD-RLS Adaptive Filters With Penalties for Sparse Identification , 2013, IEEE Transactions on Signal Processing.

[13]  Ender M. Eksioglu,et al.  RLS Algorithm With Convex Regularization , 2011, IEEE Signal Processing Letters.

[14]  Chunguang Li,et al.  Distributed Sparse Recursive Least-Squares Over Networks , 2014, IEEE Transactions on Signal Processing.

[15]  Ender M. Eksioglu,et al.  RLS adaptive filtering with sparsity regularization , 2010, 10th International Conference on Information Science, Signal Processing and their Applications (ISSPA 2010).

[16]  Alexandru Onose,et al.  Greedy Sparse RLS , 2012, IEEE Transactions on Signal Processing.

[17]  Jie Chen,et al.  Transient Performance Analysis of Zero-Attracting LMS , 2016, IEEE Signal Processing Letters.

[18]  Norbert Henze,et al.  A class of invariant consistent tests for multivariate normality , 1990 .

[19]  Daniel J. Mundfrom,et al.  A Monte Carlo comparison of the Type I and Type II error rates of tests of multivariate normality , 2005 .

[20]  Peng Shi,et al.  Convergence analysis of sparse LMS algorithms with l1-norm penalty based on white input signal , 2010, Signal Process..

[21]  Jacob Benesty,et al.  Recursive Least-Squares Algorithms for the Identification of Low-Rank Systems , 2019, IEEE/ACM Transactions on Audio, Speech, and Language Processing.