Unveiling transposable element expression heterogeneity in cell fate regulation at the single-cell level

Transposable elements (TEs) make up a majority of a typical eukaryote’s genome, and contribute to cell heterogeneity and fate in unclear ways. Single cell-sequencing technologies are powerful tools to explore cells, however analysis is typically gene-centric and TE activity has not been addressed. Here, we developed a single-cell TE processing pipeline, scTE, and report the activity of TEs in single cells in a range of biological contexts. Specific TE types were expressed in subpopulations of embryonic stem cells and were dynamically regulated during pluripotency reprogramming, differentiation, and embryogenesis. Unexpectedly, TEs were expressed in somatic cells, including human disease-specific TEs that are undetectable in bulk analyses. Finally, we applied scTE to single cell ATAC-seq data, and demonstrate that scTE can discriminate cell type using chromatin accessibly of TEs alone. Overall, our results reveal the dynamic patterns of TEs in single cells and their contributions to cell fate and heterogeneity.

[1]  J. Jurka Repbase update: a database and an electronic journal of repetitive elements. , 2000, Trends in genetics : TIG.

[2]  S. Yamanaka,et al.  Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors , 2006, Cell.

[3]  C. Feschotte Transposable elements and the evolution of regulatory networks , 2008, Nature Reviews Genetics.

[4]  Timothy L. Bailey,et al.  Motif Enrichment Analysis: a unified framework and an evaluation on ChIP data , 2010, BMC Bioinformatics.

[5]  J. Kawai,et al.  The regulated retrotransposon transcriptome of mammalian cells , 2009, Nature Genetics.

[6]  M. Batzer,et al.  The impact of retrotransposons on human genome evolution , 2009, Nature Reviews Genetics.

[7]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[8]  G. Bourque,et al.  Transposable elements have rewired the core regulatory network of human embryonic stem cells , 2010, Nature Genetics.

[9]  G. Mizuguchi,et al.  Stepwise Histone Replacement by SWR1 Requires Dual Activation with Histone H2A.Z and Canonical Nucleosome , 2010, Cell.

[10]  Sandrine Dudoit,et al.  GC-Content Normalization for RNA-Seq Data , 2011, BMC Bioinformatics.

[11]  D. Selkoe Alzheimer's disease. , 2011, Cold Spring Harbor perspectives in biology.

[12]  S. Salzberg,et al.  Repetitive DNA and next-generation sequencing: computational challenges and solutions , 2011, Nature Reviews Genetics.

[13]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[14]  C. Burge,et al.  Evolutionary Dynamics of Gene and Isoform Regulation in Mammalian Tissues , 2012, Science.

[15]  Shawn P. Driscoll,et al.  ES cell potency fluctuates with endogenous retrovirus activity , 2012, Nature.

[16]  Ralf Jauch,et al.  glbase: a framework for combining, analyzing and displaying heterogeneous genomic and high-throughput sequencing data , 2014, Cell Regeneration.

[17]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[18]  J. Baker,et al.  Endogenous retroviruses function as species-specific enhancer elements in the placenta , 2013, Nature Genetics.

[19]  H. Deng,et al.  Pluripotent Stem Cells Induced from Mouse Somatic Cells by Small-Molecule Compounds , 2013, Science.

[20]  J. Dubnau,et al.  Activation of transposable elements during aging and neuronal decline in Drosophila , 2013, Nature Neuroscience.

[21]  A. Sandelin,et al.  Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance , 2014, Nature Genetics.

[22]  L. Groop,et al.  Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism , 2014, Proceedings of the National Academy of Sciences.

[23]  L. Hurst,et al.  Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells , 2014, Nature.

[24]  Jennifer A. Erwin,et al.  Mobile DNA elements in the generation of diversity and complexity in the brain , 2014, Nature Reviews Neuroscience.

[25]  G. Bourque,et al.  The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity , 2014, Nature Structural &Molecular Biology.

[26]  Daniel C. Factor,et al.  Epigenomic comparison reveals activation of "seed" enhancers during transition from naive to primed pluripotency. , 2014, Cell stem cell.

[27]  G. Faulkner,et al.  L1 retrotransposons and somatic mosaicism in the brain. , 2014, Annual review of genetics.

[28]  Helen M. Rowe,et al.  Loss of transcriptional control over endogenous retroelements during reprogramming to pluripotency , 2014, Genome research.

[29]  E. Koonin,et al.  Evolution of adaptive immunity from transposable elements combined with innate immune systems , 2014, Nature Reviews Genetics.

[30]  Howard Y. Chang,et al.  Intrinsic retroviral reactivation in human preimplantation embryos and pluripotent cells , 2015, Nature.

[31]  Haley O. Tucker,et al.  Smyd1 Facilitates Heart Development by Antagonizing Oxidative and ER Stress Responses , 2015, PloS one.

[32]  Howard Y. Chang,et al.  Single-cell chromatin accessibility reveals principles of regulatory variation , 2015, Nature.

[33]  A. Hutchins,et al.  Transposable elements at the center of the crossroads between embryogenesis, embryonic stem cells, reprogramming, and long non-coding RNAs , 2015, Science bulletin.

[34]  B. Bruneau,et al.  Polycomb Regulates Mesoderm Cell Fate-Specification in Embryonic Stem Cells through Activation and Repression Mechanisms. , 2015, Cell stem cell.

[35]  G. Pan,et al.  The oncogene c-Jun impedes somatic cell reprogramming , 2015, Nature Cell Biology.

[36]  H. Ng,et al.  Dynamic transcription of distinct classes of endogenous retroviral elements marks specific populations of early human embryonic cells. , 2015, Cell stem cell.

[37]  Ying Jin,et al.  TEtranscripts: a package for including transposable elements in differential expression analysis of RNA-seq datasets , 2015, Bioinform..

[38]  A. Murphy,et al.  RNA Sequencing of Single Human Islet Cells Reveals Type 2 Diabetes Genes. , 2016, Cell metabolism.

[39]  Haley O. Tucker,et al.  The chromatin-binding protein Smyd1 restricts adult mammalian heart growth. , 2016, American journal of physiology. Heart and circulatory physiology.

[40]  R. Jaenisch,et al.  Molecular Criteria for Defining the Naive Human Pluripotent State , 2016, Cell Stem Cell.

[41]  Davis J. McCarthy,et al.  A step-by-step workflow for low-level analysis of single-cell RNA-seq data with Bioconductor , 2016, F1000Research.

[42]  J. García-Pérez,et al.  The impact of transposable elements on mammalian development , 2016, Development.

[43]  Charles H. Yoon,et al.  Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq , 2016, Science.

[44]  C. Feschotte,et al.  Regulatory evolution of innate immunity through co-option of endogenous retroviruses , 2016, Science.

[45]  J. Ernst,et al.  Cooperative Binding of Transcription Factors Orchestrates Reprogramming , 2017, Cell.

[46]  Grace X. Y. Zheng,et al.  Massively parallel digital transcriptional profiling of single cells , 2016, Nature Communications.

[47]  I. Amit,et al.  A Unique Microglia Type Associated with Restricting Development of Alzheimer’s Disease , 2017, Cell.

[48]  Howard Y. Chang,et al.  Genome-Wide Temporal Profiling of Transcriptome and Open Chromatin of Early Cardiomyocyte Differentiation Derived From hiPSCs and hESCs , 2017, Circulation research.

[49]  Steven D Chang,et al.  Single-Cell RNAseq analysis of infiltrating neoplastic cells at the migrating front of human glioblastoma , 2017, bioRxiv.

[50]  A. Hutchins,et al.  Chromatin Accessibility Dynamics during iPSC Reprogramming. , 2017, Cell stem cell.

[51]  A. Hutchins,et al.  Models of global gene expression define major domains of cell type and tissue identity , 2017, Nucleic acids research.

[52]  J. George,et al.  Single-cell transcriptomes identify human islet cell signatures and reveal cell-type–specific expression changes in type 2 diabetes , 2017, Genome research.

[53]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[54]  C. Feschotte,et al.  Regulatory activities of transposable elements: from conflicts to benefits , 2016, Nature Reviews Genetics.

[55]  O. Rando,et al.  LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo , 2017, Nature Genetics.

[56]  K. Burns Transposable elements in cancer , 2017, Nature Reviews Cancer.

[57]  M. Torres-Padilla,et al.  Nimble and Ready to Mingle: Transposon Outbursts of Early Development. , 2018, Trends in genetics : TIG.

[58]  James T. Webber,et al.  Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris , 2018, Nature.

[59]  Z. Bar-Joseph,et al.  Single-Cell Transcriptomic Analysis of Cardiac Differentiation from Human PSCs Reveals HOPX-Dependent Cardiomyocyte Maturation. , 2018, Cell stem cell.

[60]  David A. Knowles,et al.  Landscape of stimulation-responsive chromatin across diverse human immune cells , 2018, Nature Genetics.

[61]  Principal Investigators,et al.  Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris , 2018 .

[62]  K. Jung,et al.  Isolation of primitive mouse extraembryonic endoderm (pXEN) stem cell lines. , 2018, Stem cell research.

[63]  S. Teichmann,et al.  A rapid and robust method for single cell chromatin accessibility profiling , 2018 .

[64]  G. Pan,et al.  Chromatin Accessibility Dynamics during Chemical Induction of Pluripotency. , 2018, Cell stem cell.

[65]  G. Bourque,et al.  Computational tools to unmask transposable elements , 2018, Nature Reviews Genetics.

[66]  Ricardo J. Miragaia,et al.  A rapid and robust method for single cell chromatin accessibility profiling , 2018, Nature Communications.

[67]  Chao Tang,et al.  Single-Cell RNA-Seq Reveals Dynamic Early Embryonic-like Programs during Chemical Reprogramming. , 2018, Cell stem cell.

[68]  J. Boeke,et al.  Transcription factor profiling reveals molecular choreography and key regulators of human retrotransposon expression , 2018, Proceedings of the National Academy of Sciences.

[69]  William S. DeWitt,et al.  A Single-Cell Atlas of In Vivo Mammalian Chromatin Accessibility , 2018, Cell.

[70]  Xiaohua Shen,et al.  A LINE1-Nucleolin Partnership Regulates Early Development and ESC Identity , 2018, Cell.

[71]  G. Bourque,et al.  Ten things you should know about transposable elements , 2018, Genome Biology.

[72]  J. Boeke,et al.  LINE-1 derepression in senescent cells triggers interferon and inflammaging , 2018, Nature.

[73]  Haley O. Tucker,et al.  Histone methyltransferase Smyd1 regulates mitochondrial energetics in the heart , 2018, Proceedings of the National Academy of Sciences.

[74]  Jason D. Buenrostro,et al.  Single-cell and single-molecule epigenomics to uncover genome regulation at unprecedented resolution , 2018, Nature Genetics.

[75]  J. Boeke,et al.  LINE-1 derepression in senescent cells triggers interferon and inflammaging , 2018, Nature.

[76]  G. Pan,et al.  Induction of Pluripotent Stem Cells from Mouse Embryonic Fibroblasts by Jdp2-Jhdm1b-Mkk6-Glis1-Nanog-Essrb-Sall4. , 2019, Cell reports.

[77]  Paul J. Hoffman,et al.  Comprehensive Integration of Single-Cell Data , 2018, Cell.

[78]  Deanna M. Church,et al.  The emergent landscape of the mouse gut endoderm at single-cell resolution , 2019, Nature.

[79]  Nakul M. Shah,et al.  Transposable elements drive widespread expression of oncogenes in human cancers , 2019, Nature Genetics.

[80]  P. Rigollet,et al.  Optimal-Transport Analysis of Single-Cell Gene Expression Identifies Developmental Trajectories in Reprogramming , 2019, Cell.

[81]  Berthold Göttgens,et al.  A single-cell molecular map of mouse gastrulation and early organogenesis , 2019, Nature.

[82]  K. Burns,et al.  Transposable elements in human genetic disease , 2019, Nature Reviews Genetics.

[83]  S. Kummerfeld,et al.  The Gag protein PEG10 binds to RNA and regulates trophoblast stem cell lineage specification , 2019, bioRxiv.

[84]  Mark Gerstein,et al.  GENCODE reference annotation for the human and mouse genomes , 2018, Nucleic Acids Res..

[85]  A. del Sol,et al.  Single-cell analysis of cardiogenesis reveals basis for organ level developmental defects , 2019, Nature.

[86]  Stein Aerts,et al.  cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data , 2019, Nature Methods.

[87]  G. Pan,et al.  Resolving Cell Fate Decisions during Somatic Cell Reprogramming by Single-Cell RNA-Seq. , 2019, Molecular cell.

[88]  Oliver H. Tam,et al.  Diseases of the nERVous system: retrotransposon activity in neurodegenerative disease , 2019, Mobile DNA.

[89]  P. Rigollet,et al.  Optimal-Transport Analysis of Single-Cell Gene Expression Identifies Developmental Trajectories in Reprogramming , 2019, Cell.

[90]  David A. Knowles,et al.  Landscape of stimulation-responsive chromatin across diverse human immune cells , 2018, Nature Genetics.

[91]  I. Amit,et al.  Dysfunctional CD8 T Cells Form a Proliferative, Dynamically Regulated Compartment within Human Melanoma , 2019, Cell.

[92]  Y. Loh,et al.  Transposable elements are regulated by context-specific patterns of chromatin marks in mouse embryonic stem cells , 2019, Nature Communications.

[93]  Xudong Fu,et al.  Myc and Dnmt1 impede the pluripotent to totipotent state transition in embryonic stem cells , 2019, Nature Cell Biology.