Thermal imaging of a heat transport in regions structured by femtosecond laser.

A non-contact determination of thermal diffusivity and spatial distribution of temperature on tens-of-micrometers scale is demonstrated by thermal imaging. Temperature localization and a heat flow have been in situ monitored with ∼ 10 ms temporal resolution in Kapton polymer films structured by femtosecond laser pulses. The structured regions can localize temperature and create strong thermal gradients of few degrees over tens-of-micrometers (∼ 0.1 K/μm). This is used to induce an anisotropy in a heat transport. Temperature changes on the order of ∼ 0.1°C were reliably detected and spatial spreading by diffusion was monitored using Fourier analysis. Application potential, miniaturization prospects, and emissivity changes induced by laser structuring of materials are discussed.

[1]  Saulius Juodkazis,et al.  Thermal and optical properties of the femtosecond-laser-structured and stress-induced birefringent regions in sapphire. , 2010, Optics express.

[2]  Jan Siegel,et al.  Ultrafast imaging of transient electronic plasmas produced in conditions of femtosecond waveguide writing in dielectrics , 2008 .

[3]  A. Majumdar,et al.  Enhanced Thermoelectric Performance of Rough Silicon Nanowires. , 2008 .

[4]  Boris N. Chichkov,et al.  Materials processing: Two-photon fabrication , 2009 .

[5]  N. Nishiguchi,et al.  High-efficient acoustic wave rectifier , 2007 .

[6]  Satoshi Kawata,et al.  Finer features for functional microdevices , 2001, Nature.

[7]  Saulius Juodkazis,et al.  Modification of refractive index by a single femtosecond pulse confined inside a bulk of a photorefractive crystal , 2010 .

[8]  Alan Arai,et al.  Waveguide writing in fused silica with a femtosecond fiber laser at 522 nm and 1 MHz repetition rate. , 2005, Optics express.

[9]  P. Leiderer,et al.  Optical temperature measurements on thin freestanding silicon membranes. , 2010, The Review of scientific instruments.

[10]  E Audouard,et al.  Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass. , 2009, Optics express.

[11]  Saulius Juodkazis,et al.  Thermal and optical properties of femtosecond-laser-structured PMMA , 2010 .

[12]  Saulius Juodkazis,et al.  Three-dimensional recording by tightly focused femtosecond pulses in LiNbO3 , 2006 .

[13]  Saulius Juodkazis,et al.  Miniaturization of a thermally driven Ni‖Si bimorph , 2003 .

[14]  Saulius Juodkazis,et al.  Efficient Microvalve Driven by a Si–Ni Bimorph , 2003 .

[15]  Wilhelm Warta,et al.  Understanding junction breakdown in multicrystalline solar cells , 2011 .

[16]  Daniel Day,et al.  Microchannel fabrication in PMMA based on localized heating by nanojoule high repetition rate femtosecond pulses. , 2005, Optics express.

[17]  Saulius Juodkazis,et al.  Femtosecond laser induced density changes in GeO_2 and SiO_2 glasses: fictive temperature effect [Invited] , 2011 .

[18]  X. Gan,et al.  Three dimensional nanoparticle trapping enhanced by surface plasmon resonance. , 2010, Optics express.

[19]  Junko Morikawa,et al.  Thermal diffusivity of aromatic polyimide thin films by temperature wave analysis , 2009 .

[20]  Koji Ikuta,et al.  Three-dimensional microfabrication by use of single-photon-absorbed polymerization , 2000 .

[21]  S. Wada,et al.  Coupled laser molecular trapping, cluster assembly, and deposition fed by laser-induced Marangoni convection. , 2008, Optics express.

[22]  Saulius Juodkazis,et al.  Surface-texturing of sapphire by femtosecond laser pulses for photonic applications , 2010 .

[23]  S. Nolte,et al.  Femtosecond waveguide writing: a new avenue to three-dimensional integrated optics , 2003 .

[24]  James A. Piper,et al.  Ultrafast laser written active devices , 2009 .

[25]  Bahaa E. A. Saleh,et al.  Acrylic-based resin with favorable properties for three-dimensional two-photon polymerization , 2004 .

[26]  Xiao Tang,et al.  Ingenious Method for Eliminating Effects of Heat Loss in Measurements of Thermal Diffusivity by ac Calorimetric Method , 1993 .

[27]  S. Juodkazis,et al.  Photophysics and photochemistry of a laser manipulated microparticle , 1999 .

[28]  Shoji Maruo,et al.  Three-dimensional microfabrication with two-photon absorbed photopolymerization , 1996, International Commission for Optics.

[29]  Saulius Juodkazis,et al.  Photoelectrolysis of water: Solar hydrogen--achievements and perspectives. , 2010, Optics express.

[30]  Yves Bellouard,et al.  Thermal conductivity contrast measurement of fused silica exposed to low-energy femtosecond laser pulses , 2006 .

[31]  Saulius Juodkazis,et al.  Feature-size reduction of photopolymerized structures by femtosecond optical curing of SU-8 , 2006 .

[32]  S. Juodkazis,et al.  Thermal diffusivity in femtosecond-laser-structured micro-volumes of polymers , 2010 .

[33]  Saulius Juodkazis,et al.  Optical angular manipulation of liquid crystal droplets in laser tweezers , 2009 .

[34]  Saulius Juodkazis,et al.  Influence of ordering change on the optical and thermal properties of inflation polyethylene films , 2011 .

[35]  R Osellame,et al.  Femtosecond micromachining of symmetric waveguides at 1.5 microm by astigmatic beam focusing. , 2002, Optics letters.