Flexible TiO2/SiO2 nanofibrous membrane with high near-infrared reflectance for thermal insulation

[1]  Ziqing Li,et al.  Application of Nanostructured TiO2 in UV Photodetectors: A Review , 2022, Advanced materials.

[2]  Xin Zhao,et al.  Challenges toward carbon neutrality in China: Strategies and countermeasures , 2022, Resources, Conservation and Recycling.

[3]  Xingzhong Yuan,et al.  Near‐Infrared Light Responsive TiO2 for Efficient Solar Energy Utilization , 2021, Advanced Functional Materials.

[4]  Yan Wang,et al.  TiO2-based Nanosystem for Cancer Therapy and Antimicrobial Treatment: A Review , 2021, Chemical Engineering Journal.

[5]  B. Ding,et al.  Superior Flexibility in Oxide Ceramic Crystal Nanofibers , 2021, Advanced materials.

[6]  Fang Zhao,et al.  Electrospinning preparation and anti-infrared radiation performance of silica/titanium dioxide composite nanofiber membrane , 2021, RSC advances.

[7]  Lin Wang,et al.  High-temperature flexible, strength and hydrophobic YSZ/SiO2 nanofibrous membranes with excellent thermal insulation , 2021 .

[8]  D. Xu,et al.  Fabrication of TiO2-coated ZrO2 fibers for heat radiative applications , 2020 .

[9]  P. Xiao,et al.  Flexible and robust YAG-Al2O3 composite nanofibrous membranes enabled by a hybrid nanocrystalline-amorphous structure , 2020 .

[10]  Luyi Zhu,et al.  Hydrothermally grown uniform TiO2 coatings on ZrO2 fibers and their infrared reflective and thermal conductive properties , 2020 .

[11]  C. Hellberg,et al.  Nanoscale stacking fault–assisted room temperature plasticity in flash-sintered TiO2 , 2019, Science Advances.

[12]  Lin Wang,et al.  Effect of high‐pressure vapor pretreatment on the microstructure evolution and tensile strength of zirconia fibers , 2019, Journal of the American Ceramic Society.

[13]  Lin Wang,et al.  Flexible TiO2 ceramic fibers near-infrared reflective membrane fabricated by electrospinning , 2019, Ceramics International.

[14]  C. Mitterer,et al.  Anisotropy of fracture toughness in nanostructured ceramics controlled by grain boundary design , 2019, Materials & Design.

[15]  Huijun Wu,et al.  Prediction and optimization of radiative thermal properties of nano TiO2 assembled fibrous insulations , 2018 .

[16]  Xinguo Xi,et al.  Preparation of fine-grained silica-doped zirconia fibers by electrospinning , 2017 .

[17]  Huajian Gao,et al.  Ultralight, scalable, and high-temperature–resilient ceramic nanofiber sponges , 2017, Science Advances.

[18]  F. Raether,et al.  Heat Transfer Properties of Hollow-Fiber Insulation Materials at High Temperatures , 2017 .

[19]  M. Buchmeiser,et al.  Synthesis of zirconia toughened alumina (ZTA) fibers for high performance materials , 2016 .

[20]  Ji-yang Wang,et al.  Ag2O/TiO2 nanobelts heterostructure with enhanced ultraviolet and visible photocatalytic activity. , 2010, ACS applied materials & interfaces.

[21]  D. Xu,et al.  Preparation and characterization of TiO2 fiber with a facile polyorganotitanium precursor method. , 2009, Journal of colloid and interface science.

[22]  A. Demourgues,et al.  Correlation between structural features and vis-NIR spectra of α-Fe2O3 hematite and AFe2O4 spinel oxides (A = Mg, Zn) , 2008 .

[23]  Seung Goo Lee,et al.  Preparation of SiO2/TiO2 composite fibers by sol–gel reaction and electrospinning , 2007 .

[24]  Bryce S. Richards,et al.  Single-material TiO2 double-layer antireflection coatings , 2003 .

[25]  M. Tsai Effects of hydrolysis processing on the character of forsterite gel fibers. Part I: preparation, spinnability and molecular structure , 2002 .

[26]  Glen B. Deacon,et al.  Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination , 1980 .

[27]  Tianxi Liu,et al.  Highly flexible and compressible polyimide/silica aerogels with integrated double network for thermal insulation and fire-retardancy , 2022, Journal of Materials Science & Technology.

[28]  Ludwig Boltzmann,et al.  Ueber eine von Hrn. Bartoli entdeckte Beziehung der Wärmestrahlung zum zweiten Hauptsatze , 1884 .