The Origin of Life--Out of the Blue.
暂无分享,去创建一个
[1] Anthony D. Keefe,et al. Was ferrocyanide a prebiotic reagent? , 2005, Origins of life and evolution of the biosphere.
[2] A. Eschenmoser,et al. Chemie von ?-Aminonitrilen. 12. Mitteilung. Sondierungen ber thermische Umwandlungen von ?-Aminonitrilen , 1994 .
[3] Zaida Luthey-Schulten,et al. On the Evolution of Structure in Aminoacyl-tRNA Synthetases , 2003, Microbiology and Molecular Biology Reviews.
[4] B. Kamber,et al. On the track of the elusive Sudbury impact: geochemical evidence for a chondrite or comet bolide , 2015 .
[5] S. Pitsch,et al. PYRANOSYL-RNA ('P-RNA') : BASE-PAIRING SELECTIVITY AND POTENTIAL TO REPLICATE , 1995 .
[6] A. Rubin. Mineralogy of meteorite groups , 1997 .
[7] H. Cleaves,et al. The prebiotic geochemistry of formaldehyde , 2008 .
[8] B. Rode,et al. Prebiotic Chemistry: The Amino Acid and Peptide World , 2005 .
[9] A. Horváth,et al. Formation of aquated electrons and the individual quantum yields for photoactive species in the Cu(I)-KCN-H2O system , 1984 .
[10] R. Shapiro. Prebiotic ribose synthesis: A critical analysis , 1986, Origins of life and evolution of the biosphere.
[11] C. Lehmann,et al. Chemie der α-Aminonitrile 1. Mitteilung Einleitung und Wege zu Uroporphyrinogen-octanitrilen , 1987 .
[12] Vitor B. Pinheiro,et al. Catalysts from synthetic genetic polymers , 2014, Nature.
[13] Tony Cox,et al. Exploratory Studies to Investigate a Linked Prebiotic Origin of RNA and Coded Peptides , 2004, Chemistry & biodiversity.
[14] A. Mclean,et al. A Thermodynamic Study of CaCN2 , 2000 .
[15] G. Wächtershäuser,et al. Groundworks for an evolutionary biochemistry: the iron-sulphur world. , 1992, Progress in biophysics and molecular biology.
[16] A. Butlerow. Bildung einer zuckerartigen Substanz durch Synthese , 1861 .
[17] D. E. Bryant,et al. Direct evidence for the availability of reactive, water soluble phosphorus on the early Earth. H-phosphinic acid from the Nantan meteorite. , 2006, Chemical communications.
[18] F. Lipmann,et al. CHEMICAL AND ENZYMATIC SYNTHESIS OF CARBAMYL PHOSPHATE. , 1960, Proceedings of the National Academy of Sciences of the United States of America.
[19] S. Benner,et al. Synthesis of carbohydrates in mineral-guided prebiotic cycles. , 2011, Journal of the American Chemical Society.
[20] J. Sutherland,et al. Exploratory Studies to Investigate a Linked Prebiotic Origin of RNA and Coded Peptides. 4th Communication , 2005, Chemistry & biodiversity.
[21] L. Orgel,et al. Prebiotic Synthesis: Phosphorylation in Aqueous Solution , 1968, Science.
[22] Robert Shapiro,et al. A simpler origin for life. , 2007, Scientific American.
[23] François Coderre,et al. Modeling the cyanide heap leaching of cupriferous gold ores , 1999 .
[24] J. Oró,et al. Amino-acid Synthesis from Hydrogen Cyanide under Possible Primitive Earth Conditions , 1961, Nature.
[25] H. Noller. Evolution of protein synthesis from an RNA world. , 2012, Cold Spring Harbor perspectives in biology.
[26] Steven B. Charnley,et al. The Chemical Composition of Comets—Emerging Taxonomies and Natal Heritage , 2011 .
[27] A. Eschenmoser,et al. Chemie von α‐Aminonitrilen. 13. Mitteilung. Über die Bildung von 2‐Oxoethyl‐phosphaten (“Glycoladehyd‐phosphaten”) aus rac‐Oxirancarbonitril und anorganischem Phosphat und über (formale) Konstitutionelle Zusammenhänge zwischen 2‐Oxoethyl‐phosphaten und Oligo (hexo‐ und pentopyranosyl)nucleotid‐Rückg , 1994 .
[28] K. Tsiganis,et al. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.
[29] Hans Kuhn,et al. Model consideration for the origin of life , 1976, Naturwissenschaften.
[30] C. Woese. On the evolution of cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.
[31] L. Orgel,et al. Urea-Inorganic Phosphate Mixtures as Prebiotic Phosphorylating Agents , 1971, Science.
[32] G. F. Joyce,et al. Selective derivatization and sequestration of ribose from a prebiotic mix. , 2004, Journal of the American Chemical Society.
[33] D. Deamer,et al. The Lipid World , 2001, Origins of life and evolution of the biosphere.
[34] A. Eschenmoser. Etiology of potentially primordial biomolecular structures: from vitamin B12 to the nucleic acids and an inquiry into the chemistry of life's origin: a retrospective. , 2011, Angewandte Chemie.
[35] R. Hazen. Paleomineralogy of the Hadean Eon: A preliminary species list , 2013, American Journal of Science.
[36] Timothy P. Mui,et al. Prebiotic Synthesis of Nucleotides , 2001, Origins of life and evolution of the biosphere.
[37] Peter Decker,et al. Bioids : X. Identification of formose sugars, presumable prebiotic metabolites, using capillary gas chromatography/gas chromatography—mas spectrometry of n-butoxime trifluoroacetates on OV-225 , 1982 .
[38] K. Ruiz-Mirazo,et al. Prebiotic systems chemistry: new perspectives for the origins of life. , 2014, Chemical reviews.
[39] G. W. Foster. XCV.—The action of light on potassium ferrocyanide , 1906 .
[40] Alastair L Parkes,et al. RNA: Prebiotic Product, or Biotic Invention? , 2007, Chemistry & biodiversity.
[41] Walther Löub. Studien über die chemische Wirkung der stillen elektrischen Entladung. , 1906 .
[42] N. Yang,et al. Photochemistry of cytosine derivatives. 2. Photohydration of cytosine derivatives. Proton magnetic resonance study on the chemical structure and property of photohydrates. , 1978, Biochemistry.
[43] Claudia Percivalle,et al. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. , 2015, Nature Chemistry.
[44] J. Ferris,et al. Cyanovinyl Phosphate: A Prebiological Phosphorylating Agent? , 1968, Science.
[45] J. Sutherland,et al. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions , 2009, Nature.
[46] J. Sutherland,et al. Phosphate-mediated interconversion of ribo- and arabino-configured prebiotic nucleotide intermediates. , 2010, Angewandte Chemie.
[47] A. Eschenmoser. On a Hypothetical Generational Relationship between HCN and Constituents of the Reductive Citric Acid Cycle , 2007, Chemistry & biodiversity.
[48] G. P. Vdovykin. The Canyon Diablo meteorite , 1973 .
[49] L. Orgel,et al. Studies in prebiotic synthesis. V. Synthesis and photoanomerization of pyrimidine nucleosides. , 1970, Journal of molecular biology.
[50] A. Eschenmoser. Vitamin B12: Experiments Concerning the Origin of Its Molecular Structure , 1988 .
[51] J. Sutherland,et al. Prebiotic chemistry: a new modus operandi , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.
[52] S A Benner,et al. Borate Minerals Stabilize Ribose , 2004, Science.
[53] R. Grieve,et al. The Sudbury Igneous Complex: A Differentiated Impact Melt Sheet , 2002 .
[54] A. Serianni,et al. Cyanohydrin synthesis: studies with carbon-13-labeled cyanide , 1980 .
[55] G. Zubay. Studies on the Lead-Catalyzed Synthesis of Aldopentoses , 1998, Origins of life and evolution of the biosphere.
[56] R. Symons. The importance of amino radicals (R2N) as reaction intermediates , 1973 .
[57] J. Oró,et al. Synthesis of adenine from ammonium cyanide , 1960 .
[58] G. F. Joyce. The antiquity of RNA-based evolution , 2002, Nature.
[59] A W Schwartz,et al. The case for an ancestral genetic system involving simple analogues of the nucleotides. , 1987, Proceedings of the National Academy of Sciences of the United States of America.
[60] H. J. Melosh,et al. Planetary science: Meteor Crater formed by low-velocity impact , 2005, Nature.
[61] A. Eschenmoser. Vitamin B12: Experimente zur Frage nach dem Ursprung seiner molekularen Struktur† , 1988 .
[62] F. G. Pany,et al. Electrolytic Dissolution of Iron Meteorites , 1966, Science.
[63] D. Söll,et al. The adaptor hypothesis revisited. , 2000, Trends in biochemical sciences.
[64] S. Benner,et al. Asphalt, water, and the prebiotic synthesis of ribose, ribonucleosides, and RNA. , 2012, Accounts of chemical research.
[65] Steven A Benner,et al. Planetary organic chemistry and the origins of biomolecules. , 2010, Cold Spring Harbor perspectives in biology.
[66] J. Nagyvary,et al. Prebiotic Formation of Cytidine Nucleotides , 1971, Nature.
[67] Peter Scholz,et al. Chemical Etiology of Nucleic Acid Structure: The α-Threofuranosyl-(3'→2') Oligonucleotide System , 2000 .
[68] D. Lauretta,et al. Aqueous corrosion of phosphide minerals from iron meteorites: a highly reactive source of prebiotic phosphorus on the surface of the early Earth. , 2005, Astrobiology.
[69] J. Sutherland,et al. Towards an evolutionary theory of the origin of life based on kinetics and thermodynamics , 2013, Open Biology.
[70] A. Eschenmoser. The TNA-Family of Nucleic Acid Systems: Properties and Prospects , 2004, Origins of life and evolution of the biosphere.
[71] J. Sutherland,et al. Prebiotic synthesis of simple sugars by photoredox systems chemistry. , 2012, Nature chemistry.
[72] R. Micura,et al. Pyranosyl‐RNA: Further Observations on Replication , 1997 .
[73] W. Voelter,et al. Kinetik, Katalyse und Mechanismus der Sekundärreaktion in der Schlußphase der Formose‐Reaktion , 1984 .
[74] J. Sutherland,et al. Killing two birds with one stone: a chemically plausible scheme for linked nucleic acid replication and coded peptide synthesis. , 1997, Chemistry and Biology.
[75] J. Sutherland,et al. Direct assembly of nucleoside precursors from two- and three-carbon units. , 2006, Angewandte Chemie.
[76] Steven A Benner,et al. Setting the stage: the history, chemistry, and geobiology behind RNA. , 2012, Cold Spring Harbor perspectives in biology.
[77] D. Moreira,et al. The early evolution of lipid membranes and the three domains of life , 2012, Nature Reviews Microbiology.
[78] Peter Strazewski,et al. Omne Vivum Ex Vivo … Omne? How to Feed an Inanimate Evolvable Chemical System so as to Let it Self‐evolve into Increased Complexity and Life‐like Behaviour , 2015 .
[79] A. Schoffstall. Prebiotic phosphorylation of nucleosides in formamide , 1976, Origins of life.
[80] S. Steinberg,et al. A hierarchical model for evolution of 23S ribosomal RNA , 2009, Nature.
[81] L. Orgel,et al. An Unusual Photochemical Rearrangement in the Synthesis of Adenine from Hydrogen Cyanide1 , 1966 .
[82] J. Sutherland,et al. On the Prebiotic Synthesis of Ribonucleotides: Photoanomerisation of Cytosine Nucleosides and Nucleotides Revisited , 2007, Chembiochem : a European journal of chemical biology.
[83] E. Wagner,et al. Chemie von a-Aminonitrilen. Aldomerisierung von Glycolaldehyd-phosphat zu racemischen Hexose-2,4,6-triphosphaten und (in Gegenwart von Formaldehyd) racemischen Pentose-2,4-diphosphaten: rac-Allose-2,4,6-triphosphat und rac-Ribose-2,4-diphosphat sind die Reaktionshauptprodukte† , 1990 .
[84] A. Eschenmoser. Ätiologie potentiell primordialer Biomolekül‐Strukturen: Vom Vitamin B12 zu den Nukleinsäuren und der Frage nach der Chemie der Entstehung des Lebens – ein Rückblick , 2011 .
[85] E. Wagner,et al. Chemie von α‐Aminonitrilen. Aziridin‐2‐carbonitril, ein Vorläufer von rca‐O3‐Phosphoserinnitril und Glycolaldehyd‐phosphat , 1990 .
[86] J. Sutherland,et al. Synthesis of Aldehydic Ribonucleotide and Amino Acid Precursors by Photoredox Chemistry , 2013, Angewandte Chemie.
[87] S. Hasegawa,et al. Hydrogen Cyanide Production due to Mid-Size Impacts in a Redox-Neutral N2-Rich Atmosphere , 2013, Origins of Life and Evolution of Biospheres.
[88] J. Šponer,et al. Prebiotic routes to nucleosides: a quantum chemical insight into the energetics of the multistep reaction pathways. , 2011, Chemistry.
[89] Ronald Breslow,et al. On the mechanism of the formose reaction , 1959 .