The Origin of Life--Out of the Blue.

Either to sustain autotrophy, or as a prelude to heterotrophy, organic synthesis from an environmentally available C1 feedstock molecule is crucial to the origin of life. Recent findings augment key literature results and suggest that hydrogen cyanide--"Blausäure"--was that feedstock.

[1]  Anthony D. Keefe,et al.  Was ferrocyanide a prebiotic reagent? , 2005, Origins of life and evolution of the biosphere.

[2]  A. Eschenmoser,et al.  Chemie von ?-Aminonitrilen. 12. Mitteilung. Sondierungen ber thermische Umwandlungen von ?-Aminonitrilen , 1994 .

[3]  Zaida Luthey-Schulten,et al.  On the Evolution of Structure in Aminoacyl-tRNA Synthetases , 2003, Microbiology and Molecular Biology Reviews.

[4]  B. Kamber,et al.  On the track of the elusive Sudbury impact: geochemical evidence for a chondrite or comet bolide , 2015 .

[5]  S. Pitsch,et al.  PYRANOSYL-RNA ('P-RNA') : BASE-PAIRING SELECTIVITY AND POTENTIAL TO REPLICATE , 1995 .

[6]  A. Rubin Mineralogy of meteorite groups , 1997 .

[7]  H. Cleaves,et al.  The prebiotic geochemistry of formaldehyde , 2008 .

[8]  B. Rode,et al.  Prebiotic Chemistry: The Amino Acid and Peptide World , 2005 .

[9]  A. Horváth,et al.  Formation of aquated electrons and the individual quantum yields for photoactive species in the Cu(I)-KCN-H2O system , 1984 .

[10]  R. Shapiro Prebiotic ribose synthesis: A critical analysis , 1986, Origins of life and evolution of the biosphere.

[11]  C. Lehmann,et al.  Chemie der α-Aminonitrile 1. Mitteilung Einleitung und Wege zu Uroporphyrinogen-octanitrilen , 1987 .

[12]  Vitor B. Pinheiro,et al.  Catalysts from synthetic genetic polymers , 2014, Nature.

[13]  Tony Cox,et al.  Exploratory Studies to Investigate a Linked Prebiotic Origin of RNA and Coded Peptides , 2004, Chemistry & biodiversity.

[14]  A. Mclean,et al.  A Thermodynamic Study of CaCN2 , 2000 .

[15]  G. Wächtershäuser,et al.  Groundworks for an evolutionary biochemistry: the iron-sulphur world. , 1992, Progress in biophysics and molecular biology.

[16]  A. Butlerow Bildung einer zuckerartigen Substanz durch Synthese , 1861 .

[17]  D. E. Bryant,et al.  Direct evidence for the availability of reactive, water soluble phosphorus on the early Earth. H-phosphinic acid from the Nantan meteorite. , 2006, Chemical communications.

[18]  F. Lipmann,et al.  CHEMICAL AND ENZYMATIC SYNTHESIS OF CARBAMYL PHOSPHATE. , 1960, Proceedings of the National Academy of Sciences of the United States of America.

[19]  S. Benner,et al.  Synthesis of carbohydrates in mineral-guided prebiotic cycles. , 2011, Journal of the American Chemical Society.

[20]  J. Sutherland,et al.  Exploratory Studies to Investigate a Linked Prebiotic Origin of RNA and Coded Peptides. 4th Communication , 2005, Chemistry & biodiversity.

[21]  L. Orgel,et al.  Prebiotic Synthesis: Phosphorylation in Aqueous Solution , 1968, Science.

[22]  Robert Shapiro,et al.  A simpler origin for life. , 2007, Scientific American.

[23]  François Coderre,et al.  Modeling the cyanide heap leaching of cupriferous gold ores , 1999 .

[24]  J. Oró,et al.  Amino-acid Synthesis from Hydrogen Cyanide under Possible Primitive Earth Conditions , 1961, Nature.

[25]  H. Noller Evolution of protein synthesis from an RNA world. , 2012, Cold Spring Harbor perspectives in biology.

[26]  Steven B. Charnley,et al.  The Chemical Composition of Comets—Emerging Taxonomies and Natal Heritage , 2011 .

[27]  A. Eschenmoser,et al.  Chemie von α‐Aminonitrilen. 13. Mitteilung. Über die Bildung von 2‐Oxoethyl‐phosphaten (“Glycoladehyd‐phosphaten”) aus rac‐Oxirancarbonitril und anorganischem Phosphat und über (formale) Konstitutionelle Zusammenhänge zwischen 2‐Oxoethyl‐phosphaten und Oligo (hexo‐ und pentopyranosyl)nucleotid‐Rückg , 1994 .

[28]  K. Tsiganis,et al.  Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets , 2005, Nature.

[29]  Hans Kuhn,et al.  Model consideration for the origin of life , 1976, Naturwissenschaften.

[30]  C. Woese On the evolution of cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[31]  L. Orgel,et al.  Urea-Inorganic Phosphate Mixtures as Prebiotic Phosphorylating Agents , 1971, Science.

[32]  G. F. Joyce,et al.  Selective derivatization and sequestration of ribose from a prebiotic mix. , 2004, Journal of the American Chemical Society.

[33]  D. Deamer,et al.  The Lipid World , 2001, Origins of life and evolution of the biosphere.

[34]  A. Eschenmoser Etiology of potentially primordial biomolecular structures: from vitamin B12 to the nucleic acids and an inquiry into the chemistry of life's origin: a retrospective. , 2011, Angewandte Chemie.

[35]  R. Hazen Paleomineralogy of the Hadean Eon: A preliminary species list , 2013, American Journal of Science.

[36]  Timothy P. Mui,et al.  Prebiotic Synthesis of Nucleotides , 2001, Origins of life and evolution of the biosphere.

[37]  Peter Decker,et al.  Bioids : X. Identification of formose sugars, presumable prebiotic metabolites, using capillary gas chromatography/gas chromatography—mas spectrometry of n-butoxime trifluoroacetates on OV-225 , 1982 .

[38]  K. Ruiz-Mirazo,et al.  Prebiotic systems chemistry: new perspectives for the origins of life. , 2014, Chemical reviews.

[39]  G. W. Foster XCV.—The action of light on potassium ferrocyanide , 1906 .

[40]  Alastair L Parkes,et al.  RNA: Prebiotic Product, or Biotic Invention? , 2007, Chemistry & biodiversity.

[41]  Walther Löub Studien über die chemische Wirkung der stillen elektrischen Entladung. , 1906 .

[42]  N. Yang,et al.  Photochemistry of cytosine derivatives. 2. Photohydration of cytosine derivatives. Proton magnetic resonance study on the chemical structure and property of photohydrates. , 1978, Biochemistry.

[43]  Claudia Percivalle,et al.  Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. , 2015, Nature Chemistry.

[44]  J. Ferris,et al.  Cyanovinyl Phosphate: A Prebiological Phosphorylating Agent? , 1968, Science.

[45]  J. Sutherland,et al.  Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions , 2009, Nature.

[46]  J. Sutherland,et al.  Phosphate-mediated interconversion of ribo- and arabino-configured prebiotic nucleotide intermediates. , 2010, Angewandte Chemie.

[47]  A. Eschenmoser On a Hypothetical Generational Relationship between HCN and Constituents of the Reductive Citric Acid Cycle , 2007, Chemistry & biodiversity.

[48]  G. P. Vdovykin The Canyon Diablo meteorite , 1973 .

[49]  L. Orgel,et al.  Studies in prebiotic synthesis. V. Synthesis and photoanomerization of pyrimidine nucleosides. , 1970, Journal of molecular biology.

[50]  A. Eschenmoser Vitamin B12: Experiments Concerning the Origin of Its Molecular Structure , 1988 .

[51]  J. Sutherland,et al.  Prebiotic chemistry: a new modus operandi , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[52]  S A Benner,et al.  Borate Minerals Stabilize Ribose , 2004, Science.

[53]  R. Grieve,et al.  The Sudbury Igneous Complex: A Differentiated Impact Melt Sheet , 2002 .

[54]  A. Serianni,et al.  Cyanohydrin synthesis: studies with carbon-13-labeled cyanide , 1980 .

[55]  G. Zubay Studies on the Lead-Catalyzed Synthesis of Aldopentoses , 1998, Origins of life and evolution of the biosphere.

[56]  R. Symons The importance of amino radicals (R2N) as reaction intermediates , 1973 .

[57]  J. Oró,et al.  Synthesis of adenine from ammonium cyanide , 1960 .

[58]  G. F. Joyce The antiquity of RNA-based evolution , 2002, Nature.

[59]  A W Schwartz,et al.  The case for an ancestral genetic system involving simple analogues of the nucleotides. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[60]  H. J. Melosh,et al.  Planetary science: Meteor Crater formed by low-velocity impact , 2005, Nature.

[61]  A. Eschenmoser Vitamin B12: Experimente zur Frage nach dem Ursprung seiner molekularen Struktur† , 1988 .

[62]  F. G. Pany,et al.  Electrolytic Dissolution of Iron Meteorites , 1966, Science.

[63]  D. Söll,et al.  The adaptor hypothesis revisited. , 2000, Trends in biochemical sciences.

[64]  S. Benner,et al.  Asphalt, water, and the prebiotic synthesis of ribose, ribonucleosides, and RNA. , 2012, Accounts of chemical research.

[65]  Steven A Benner,et al.  Planetary organic chemistry and the origins of biomolecules. , 2010, Cold Spring Harbor perspectives in biology.

[66]  J. Nagyvary,et al.  Prebiotic Formation of Cytidine Nucleotides , 1971, Nature.

[67]  Peter Scholz,et al.  Chemical Etiology of Nucleic Acid Structure: The α-Threofuranosyl-(3'→2') Oligonucleotide System , 2000 .

[68]  D. Lauretta,et al.  Aqueous corrosion of phosphide minerals from iron meteorites: a highly reactive source of prebiotic phosphorus on the surface of the early Earth. , 2005, Astrobiology.

[69]  J. Sutherland,et al.  Towards an evolutionary theory of the origin of life based on kinetics and thermodynamics , 2013, Open Biology.

[70]  A. Eschenmoser The TNA-Family of Nucleic Acid Systems: Properties and Prospects , 2004, Origins of life and evolution of the biosphere.

[71]  J. Sutherland,et al.  Prebiotic synthesis of simple sugars by photoredox systems chemistry. , 2012, Nature chemistry.

[72]  R. Micura,et al.  Pyranosyl‐RNA: Further Observations on Replication , 1997 .

[73]  W. Voelter,et al.  Kinetik, Katalyse und Mechanismus der Sekundärreaktion in der Schlußphase der Formose‐Reaktion , 1984 .

[74]  J. Sutherland,et al.  Killing two birds with one stone: a chemically plausible scheme for linked nucleic acid replication and coded peptide synthesis. , 1997, Chemistry and Biology.

[75]  J. Sutherland,et al.  Direct assembly of nucleoside precursors from two- and three-carbon units. , 2006, Angewandte Chemie.

[76]  Steven A Benner,et al.  Setting the stage: the history, chemistry, and geobiology behind RNA. , 2012, Cold Spring Harbor perspectives in biology.

[77]  D. Moreira,et al.  The early evolution of lipid membranes and the three domains of life , 2012, Nature Reviews Microbiology.

[78]  Peter Strazewski,et al.  Omne Vivum Ex Vivo … Omne? How to Feed an Inanimate Evolvable Chemical System so as to Let it Self‐evolve into Increased Complexity and Life‐like Behaviour , 2015 .

[79]  A. Schoffstall Prebiotic phosphorylation of nucleosides in formamide , 1976, Origins of life.

[80]  S. Steinberg,et al.  A hierarchical model for evolution of 23S ribosomal RNA , 2009, Nature.

[81]  L. Orgel,et al.  An Unusual Photochemical Rearrangement in the Synthesis of Adenine from Hydrogen Cyanide1 , 1966 .

[82]  J. Sutherland,et al.  On the Prebiotic Synthesis of Ribonucleotides: Photoanomerisation of Cytosine Nucleosides and Nucleotides Revisited , 2007, Chembiochem : a European journal of chemical biology.

[83]  E. Wagner,et al.  Chemie von a-Aminonitrilen. Aldomerisierung von Glycolaldehyd-phosphat zu racemischen Hexose-2,4,6-triphosphaten und (in Gegenwart von Formaldehyd) racemischen Pentose-2,4-diphosphaten: rac-Allose-2,4,6-triphosphat und rac-Ribose-2,4-diphosphat sind die Reaktionshauptprodukte† , 1990 .

[84]  A. Eschenmoser Ätiologie potentiell primordialer Biomolekül‐Strukturen: Vom Vitamin B12 zu den Nukleinsäuren und der Frage nach der Chemie der Entstehung des Lebens – ein Rückblick , 2011 .

[85]  E. Wagner,et al.  Chemie von α‐Aminonitrilen. Aziridin‐2‐carbonitril, ein Vorläufer von rca‐O3‐Phosphoserinnitril und Glycolaldehyd‐phosphat , 1990 .

[86]  J. Sutherland,et al.  Synthesis of Aldehydic Ribonucleotide and Amino Acid Precursors by Photoredox Chemistry , 2013, Angewandte Chemie.

[87]  S. Hasegawa,et al.  Hydrogen Cyanide Production due to Mid-Size Impacts in a Redox-Neutral N2-Rich Atmosphere , 2013, Origins of Life and Evolution of Biospheres.

[88]  J. Šponer,et al.  Prebiotic routes to nucleosides: a quantum chemical insight into the energetics of the multistep reaction pathways. , 2011, Chemistry.

[89]  Ronald Breslow,et al.  On the mechanism of the formose reaction , 1959 .