Nonexistence of two classes of generalized bent functions

We obtain some new nonexistence results of generalized bent functions from $${\mathbb {Z}}^n_q$$Zqn to $${\mathbb {Z}}_q$$Zq (called type [n, q]) in the case that there exist cyclotomic integers in $$ {\mathbb {Z}}[\zeta _{q}]$$Z[ζq] with absolute value $$q^{\frac{n}{2}}$$qn2. This result generalizes two previous nonexistence results $$[n,q]=[1,2\times 7]$$[n,q]=[1,2×7] of Pei (Lect Notes Pure Appl Math 141:165–172, 1993) and $$[3,2\times 23^e]$$[3,2×23e] of Jiang and Deng (Des Codes Cryptogr 75:375–385, 2015). We also remark that by using a same method one can get similar nonexistence results of GBFs from $${\mathbb {Z}}^n_2$$Z2n to $${\mathbb {Z}}_m$$Zm.

[1]  François G. Dorais,et al.  A Wieferich Prime Search up to 6.7 × 10 15 , 2011 .

[2]  J. Neukirch Algebraic Number Theory , 1999 .

[3]  J. Milne Algebraic Number Theory , 1992 .

[4]  Keqin Feng,et al.  Generalized bent functions and class group of imaginary quadratic fields , 2001 .

[5]  Sugata Gangopadhyay,et al.  Bent and generalized bent Boolean functions , 2013, Des. Codes Cryptogr..

[6]  KeQinFENG,et al.  Non Existence of Some Generalized Bent Functions , 2003 .

[7]  S. Lang Algebraic Number Theory , 1971 .

[8]  L. Poinsot Bent functions on a finite nonabelian group , 2006 .

[9]  P. Vijay Kumar,et al.  Generalized Bent Functions and Their Properties , 1985, J. Comb. Theory, Ser. A.

[10]  V. I. Solodovnikov Bent functions from a finite abelian group into a finite abelian group , 2002 .

[11]  Bangteng Xu,et al.  Bentness and nonlinearity of functions on finite groups , 2015, Des. Codes Cryptogr..

[12]  Haiying Liu,et al.  Nonexistence of generalized bent functions from ℤ2n to ℤm , 2017, Des. Codes Cryptogr..

[13]  Timo Neumann,et al.  BENT FUNCTIONS , 2006 .

[14]  Qiangru Kuang,et al.  Number Fields , 2019 .

[15]  J. Dillon Elementary Hadamard Difference Sets , 1974 .

[16]  V. V. Yashchenko,et al.  Bent functions on a finite Abelian group , 1997 .

[17]  Robert A. Scholtz,et al.  Bent-function sequences , 1982, IEEE Trans. Inf. Theory.

[18]  Yupeng Jiang,et al.  New results on nonexistence of generalized bent functions , 2012, Des. Codes Cryptogr..