Degree distribution in random planar graphs

We prove that for each k>=0, the probability that a root vertex in a random planar graph has degree k tends to a computable constant d"k, so that the expected number of vertices of degree k is asymptotically d"kn, and moreover that @?"kd"k=1. The proof uses the tools developed by Gimenez and Noy in their solution to the problem of the asymptotic enumeration of planar graphs, and is based on a detailed analysis of the generating functions involved in counting planar graphs. However, in order to keep track of the degree of the root, new technical difficulties arise. We obtain explicit, although quite involved expressions, for the coefficients in the singular expansions of the generating functions of interest, which allow us to use transfer theorems in order to get an explicit expression for the probability generating function p(w)=@?"kd"kw^k. From this we can compute the d"k to any degree of accuracy, and derive the asymptotic estimate d"k~c@?k^-^1^/^2q^k for large values of k, where q~0.67 is a constant defined analytically.

[1]  Edward A. Bender,et al.  The asymptotic enumeration of rooted convex polyhedra , 1984, J. Comb. Theory, Ser. B.

[2]  Omer Giménez,et al.  The number of planar graphs and properties of random planar graphs , 2005 .

[3]  Valery A. Liskovets,et al.  A Pattern of Asymptotic Vertex Valency Distributions in Planar Maps , 1999, J. Comb. Theory, Ser. B.

[4]  Colin McDiarmid,et al.  On the Number of Edges in Random Planar Graphs , 2004, Combinatorics, Probability and Computing.

[5]  Omer Giménez,et al.  Asymptotic enumeration and limit laws of planar graphs , 2005, math/0501269.

[6]  Eric Fusy,et al.  A linear approximate-size random sampler for labelled planar graphs , 2007 .

[7]  Colin McDiarmid,et al.  Random planar graphs , 2005, J. Comb. Theory B.

[8]  Konstantinos Panagiotou,et al.  The Degree Sequence of Random Graphs from Subcritical Classes† , 2009, Combinatorics, Probability and Computing.

[9]  E. Bender Asymptotic Methods in Enumeration , 1974 .

[10]  Nicholas C. Wormald,et al.  The Distribution of the Maximum Vertex Degree in Random Planar Maps , 2000, J. Comb. Theory A.

[11]  C. McDiarmid,et al.  RANDOM PLANAR GRAPHS WITH GIVEN AVERAGE DEGREE , 2007 .

[12]  Colva M. Roney-Dougal,et al.  Surveys in combinatorics 2009 , 2009 .

[13]  Nicolas Bonichon,et al.  Planar Graphs, via Well-Orderly Maps and Trees , 2004, WG.

[14]  Éric Fusy,et al.  Uniform random sampling of planar graphs in linear time , 2007, Random Struct. Algorithms.

[15]  Konstantinos Panagiotou,et al.  On the degree distribution of random planar graphs , 2011, SODA '11.

[16]  Konstantinos Panagiotou,et al.  On the Degree Sequences of Random Outerplanar and Series-Parallel Graphs , 2008, APPROX-RANDOM.

[17]  Marc Noy,et al.  Enumeration and limit laws for series-parallel graphs , 2007, Eur. J. Comb..

[18]  W. T. Tutte,et al.  On the Enumeration of Rooted Non-Separable Planar Maps , 1964, Canadian Journal of Mathematics.

[19]  Cedric E. Ginestet Combinatorics, Complexity, and Chance: a Tribute to Dominic Welsh , 2008 .

[20]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[21]  Colin McDiarmid,et al.  Random graphs on surfaces , 2008, J. Comb. Theory, Ser. B.

[22]  Philippe Flajolet,et al.  Singularity Analysis of Generating Functions , 1990, SIAM J. Discret. Math..

[23]  W. T. Tutte A Census of Planar Maps , 1963, Canadian Journal of Mathematics.

[24]  W. Hayman A Generalisation of Stirling's Formula. , 1956 .

[25]  Bruce A. Reed,et al.  On the Maximum Degree of a Random Planar Graph , 2008, Comb. Probab. Comput..

[26]  Edward A. Bender,et al.  The Number of Labeled 2-Connected Planar Graphs , 2002, Electron. J. Comb..

[27]  Edward A. Bender,et al.  Face sizes of 3-polytopes , 1989, J. Comb. Theory, Ser. B.

[28]  Marc Noy,et al.  Graph classes with given 3-connected components: asymptotic counting and critical phenomena , 2007, Electron. Notes Discret. Math..

[29]  Swastik Kopparty,et al.  TO PLANAR GRAPHS , 2010 .

[30]  Konstantinos Panagiotou,et al.  On properties of random dissections and triangulations , 2008, SODA '08.

[31]  Timothy R. S. Walsh,et al.  Counting labelled three-connected and homeomorphically irreducible two-connected graphs , 1982, J. Comb. Theory, Ser. B.

[32]  R. Mullin,et al.  The enumeration of c-nets via quadrangulations , 1968 .

[33]  Marc Noy,et al.  Random planar graphs and the number of planar graphs , 2006 .

[34]  Marc Noy,et al.  Vertices of given degree in series‐parallel graphs , 2010, Random Struct. Algorithms.

[35]  Deryk Osthus,et al.  On random planar graphs, the number of planar graphs and their triangulations , 2003, J. Comb. Theory, Ser. B.

[36]  Michael Drmota,et al.  Systems of functional equations , 1997, Random Struct. Algorithms.

[37]  Marc Noy,et al.  Surveys in Combinatorics 2009: Counting planar graphs and related families of graphs , 2009 .