Optical nonlinearities in hydrogenated-amorphous silicon waveguides.

We experimentally measure the optical nonlinearities in hydrogenated-amorphous silicon (a-Si:H) waveguides through the transmission of ultra-short pulses. The measured two-photon absorption coefficient beta is 4.1 cm/GW and we obtain a 3.5pi nonlinear phase shift at 4.1 W coupled input power corresponding to a nonlinear refractive index n(2) of 4.210(-13) cm(2)/W. The measured nonlinear coefficient gamma = 2003 (Wm)(-1) is at least 5 times the value in crystalline silicon. The measured free carrier absorption coefficient sigma = 1.910(-16) cm(2) agrees with the values predicted from the Drude-Lorenz model. It is seen that a-Si:H exhibits enhanced nonlinear properties at 1550 nm and is a promising platform for nonlinear silicon photonics.

[1]  Paveen Apiratikul,et al.  Nonlinearities in porous silicon optical waveguides at 1550 nm. , 2009, Optics express.

[2]  R. Soref,et al.  Electrooptical effects in silicon , 1987 .

[3]  Xiaogang Chen,et al.  Self-phase-modulation in submicron silicon-on-insulator photonic wires. , 2006, Optics express.

[4]  J. Michel,et al.  Transparent amorphous silicon channel waveguides and high-Q resonators using a damascene process. , 2009, Optics letters.

[5]  H. Kawashima,et al.  Ultrafast nonlinear effects in hydrogenated amorphous silicon wire waveguide. , 2010, Optics express.

[6]  M. Lipson,et al.  Nanotaper for compact mode conversion. , 2003, Optics letters.

[7]  O. Boyraz,et al.  Self phase modulation induced spectral broadening in silicon waveguides , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[8]  S. Bhadra,et al.  Femtosecond pulse propagation in silicon waveguides: Variational approach and its advantages , 2008 .

[9]  N. Feng,et al.  Horizontal single and multiple slot waveguides: optical transmission at λ=1550 nm , 2007 .

[10]  T. Tsuchizawa,et al.  Four-wave mixing in silicon wire waveguides. , 2005, Optics express.

[11]  Jeff F. Young,et al.  Nonlinear propagation of ultrafast 1.5 μm pulses in high-index-contrast silicon-on-insulator waveguides , 2004 .

[12]  Mihaela Dinu,et al.  Third-order nonlinearities in silicon at telecom wavelengths , 2003 .

[13]  Karthik Narayanan,et al.  Broadband all-optical modulation in hydrogenated-amorphous silicon waveguides. , 2010, Optics express.

[14]  E. V. D. Drift,et al.  Amorphous silicon waveguides for microphotonics , 2002 .

[15]  George I. Stegeman,et al.  Material figures of merit and implications to all-optical waveguide switching , 1993, Photonics West - Lasers and Applications in Science and Engineering.

[16]  Kazuhiro Ikeda,et al.  Enhanced optical nonlinearity in amorphous silicon and its application to waveguide devices. , 2007, Optics express.

[17]  M. Rasras,et al.  Low-Loss Amorphous Silicon Channel Waveguides for Integrated Photonics , 2006, 3rd IEEE International Conference on Group IV Photonics, 2006..

[18]  J. Kanicki,et al.  Enhanced electro-optic effect in amorphous hydrogenated silicon based waveguides , 1992 .

[19]  A. Harke,et al.  Low-loss singlemode amorphous silicon waveguides , 2005 .

[20]  I. Day,et al.  Optical dispersion, two-photon absorption and self-phase modulation in silicon waveguides at 1.5 μm wavelength , 2002 .

[21]  M. Lipson,et al.  All-optical control of light on a silicon chip , 2004, Nature.

[22]  Yasuhiko Arakawa,et al.  Nonlinear-Optic Silicon-Nanowire Waveguides , 2005 .

[23]  P. Fauchet,et al.  The properties of free carriers in amorphous silicon , 1992 .

[24]  G. Agrawal,et al.  Impact of two-photon absorption on self-phase modulation in silicon waveguides. , 2007, Optics letters.