Classification of Proteomic MS Data as Bayesian Solution of an Inverse Problem

The cells in an organism emit different amounts of proteins according to their clinical state (healthy/pathological, for instance). The resulting proteomic profile can be used for early detection, diagnosis, and therapy planning. In this paper, we study the classification of a proteomic sample from the point of view of an inverse problem with a joint Bayesian solution, called inversion-classification. We propose a hierarchical physical forward model and present encouraging results from both simulation and clinical data.

[1]  Christian Jutten,et al.  Multiclass Brain–Computer Interface Classification by Riemannian Geometry , 2012, IEEE Transactions on Biomedical Engineering.

[2]  Jianqiu Zhang,et al.  MRCQuant- an accurate LC-MS relative isotopic quantification algorithm on TOF instruments , 2011, BMC Bioinformatics.

[3]  Tianwei Yu,et al.  Quantification and deconvolution of asymmetric LC-MS peaks using the bi-Gaussian mixture model and statistical model selection , 2010, BMC Bioinformatics.

[4]  Grégory Strubel Reconstruction de profils moléculaires : modélisation et inversion d'une chaîne de mesure protéomique , 2008 .

[5]  W von der Linden,et al.  Analysis of multicomponent mass spectra applying Bayesian probability theory. , 2001, Journal of mass spectrometry : JMS.

[6]  Z. Pápai,et al.  Analysis of peak asymmetry in chromatography. , 2002, Journal of chromatography. A.

[7]  William Stafford Noble,et al.  Computational and Statistical Analysis of Protein Mass Spectrometry Data , 2012, PLoS Comput. Biol..

[8]  Pierre Grangeat,et al.  A hierarchical SRM acquisition chain model for improved protein quantification in serum samples , 2012, RECOMB 2012.

[9]  P. Müller,et al.  Bayesian inference for gene expression and proteomics , 2006 .

[10]  Pierre Jallon,et al.  A graph based algorithm for postures estimation based on accelerometers data , 2010, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology.

[11]  N. Anderson,et al.  The Human Plasma Proteome , 2002, Molecular & Cellular Proteomics.

[12]  Michael Elad,et al.  Generalizing the Nonlocal-Means to Super-Resolution Reconstruction , 2009, IEEE Transactions on Image Processing.

[13]  R. Aebersold,et al.  Selected reaction monitoring for quantitative proteomics: a tutorial , 2008, Molecular systems biology.

[14]  Hyrum S. Anderson,et al.  Robust classification of signal estimates given a channel model , 2011, 2011 IEEE Statistical Signal Processing Workshop (SSP).

[15]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[16]  V B Di Marco,et al.  Mathematical functions for the representation of chromatographic peaks. , 2001, Journal of chromatography. A.

[17]  Navdeep Jaitly,et al.  VIPER: an advanced software package to support high-throughput LC-MS peptide identification , 2007, Bioinform..

[18]  Eugene A. Kapp,et al.  Overview of the HUPO Plasma Proteome Project: Results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly‐available database , 2005, Proteomics.

[19]  R. Aebersold,et al.  Mass spectrometry-based proteomics , 2003, Nature.

[20]  Jérôme Idier,et al.  Bayesian Approach to Inverse Problems: Idier/Bayesian , 2010 .

[21]  Ali Mohammad-Djafari,et al.  Quantification moléculaire par spectrométrie de masse à base de NEMS : modélisation et inversion du problème. , 2011 .

[22]  Pascal Szacherski,et al.  Joint Bayesian hierarchical inversion-classification and application in proteomics , 2011, 2011 IEEE Statistical Signal Processing Workshop (SSP).

[23]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[24]  Kelvin H Lee,et al.  Kinetic characterization of sequencing grade modified trypsin , 2005, Proteomics.

[25]  Laurent Gerfault,et al.  Apprentissage supervisé robuste de caractéristiques de classes. Application en protéomique , 2011 .

[26]  Matej Oresic,et al.  MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data , 2006, Bioinform..

[27]  Pascal Szacherski,et al.  Reconstruction de profils protéiques pour la recherche de biomarqueurs. (Reconstruction of proteomic profiles for biomarker discovery) , 2012 .

[28]  Robert L. Moritz,et al.  An assessment of current bioinformatic solutions for analyzing LC‐MS data acquired by selected reaction monitoring technology , 2012, Proteomics.

[29]  Christian P. Robert,et al.  The Bayesian choice : from decision-theoretic foundations to computational implementation , 2007 .

[30]  Manfred Rauh,et al.  LC-MS/MS for protein and peptide quantification in clinical chemistry. , 2012, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[31]  J. Garin,et al.  Isotope dilution strategies for absolute quantitative proteomics. , 2009, Journal of proteomics.

[32]  Pierre Grangeat,et al.  MRM protein quantification and serum sample classification , 2013 .

[33]  Ilya Kuselman,et al.  Investigating out-of-specification test results of chemical composition based on metrological concepts , 2010 .

[34]  F. Orieux,et al.  Super-resolution in map-making based on a physical instrument model and regularized inversion. Application to SPIRE/Herschel. , 2011, 1103.3698.

[35]  Jeffrey S. Morris,et al.  Bayesian Mixture Models for Gene Expression and Protein Profiles , 2006 .

[36]  J.-F. Giovannelli,et al.  Bayesian estimation for molecular profile reconstruction in proteomics based on liquid chromatography and mass spectrometry , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[37]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[38]  Noura Dridi,et al.  Variable selection for a mixed population applied in proteomics , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[39]  Magnus Palmblad,et al.  Mass spectrometry in clinical proteomics – from the present to the future , 2008, Proteomics. Clinical applications.

[40]  Ruedi Aebersold,et al.  7th HUPO World Congress of Proteomics: Launching the Second Phase of the HUPO Plasma Proteome Project (PPP‐2) 16–20 August 2008, Amsterdam, The Netherlands , 2009, Proteomics.

[41]  Ralph Schiess,et al.  Proteomic strategy for biomarker discovery , 2008 .

[42]  Da Ruan,et al.  Fuzzy Logic: A Spectrum of Theoretical & Practical Issues , 2007 .

[43]  Radford M. Neal,et al.  Difference detection in LC-MS data for protein biomarker discovery , 2007, Bioinform..