MesoRD 1.0: Stochastic reaction-diffusion simulations in the microscopic limit

SUMMARY MesoRD is a tool for simulating stochastic reaction-diffusion systems as modeled by the reaction diffusion master equation. The simulated systems are defined in the Systems Biology Markup Language with additions to define compartment geometries. MesoRD 1.0 supports scale-dependent reaction rate constants and reactions between reactants in neighbouring subvolumes. These new features make it possible to construct physically consistent models of diffusion-controlled reactions also at fine spatial discretization. AVAILABILITY MesoRD is written in C++ and licensed under the GNU general public license (GPL). MesoRD can be downloaded at http://mesord.sourceforge.net. The MesoRD homepage, http://mesord.sourceforge.net, contains detailed documentation and news about recently implemented features. CONTACT johan.elf@icm.uu.se.

[1]  Erik De Schutter,et al.  STEPS: Modeling and Simulating Complex Reaction-Diffusion Systems with Python , 2008, Frontiers in Neuroinformatics.

[2]  J. Elf,et al.  Stochastic reaction-diffusion kinetics in the microscopic limit , 2010, Proceedings of the National Academy of Sciences.

[3]  C. W. Gardiner,et al.  Handbook of stochastic methods - for physics, chemistry and the natural sciences, Second Edition , 1986, Springer series in synergetics.

[4]  P. R. ten Wolde,et al.  Green's-function reaction dynamics: a particle-based approach for simulating biochemical networks in time and space. , 2005, The Journal of chemical physics.

[5]  John Parkinson,et al.  Cell++ - simulating biochemical pathways , 2006, Bioinform..

[6]  Johan Hattne,et al.  Stochastic reaction-diffusion simulation with MesoRD , 2005, Bioinform..

[7]  M Ander,et al.  SmartCell, a framework to simulate cellular processes that combines stochastic approximation with diffusion and localisation: analysis of simple networks. , 2004, Systems biology.

[8]  Andreas Hellander,et al.  URDME: a modular framework for stochastic simulation of reaction-transport processes in complex geometries , 2012, BMC Systems Biology.

[9]  M. Smoluchowski Versuch einer mathematischen Theorie der Koagulationskinetik kolloider Lösungen , 1918 .

[10]  Mario di Bernardo,et al.  Design and Analysis of Biomolecular Circuits: Engineering Approaches to Systems and Synthetic Biology , 2011 .

[11]  S. Isaacson Relationship between the reaction–diffusion master equation and particle tracking models , 2008 .

[12]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[13]  A Finney,et al.  Systems biology markup language: Level 2 and beyond. , 2003, Biochemical Society transactions.

[14]  David Fange,et al.  Noise-Induced Min Phenotypes in E. coli , 2006, PLoS Comput. Biol..

[15]  S. Swain Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences , 1984 .

[16]  Scott B. Baden,et al.  Fast Monte Carlo Simulation Methods for Biological Reaction-Diffusion Systems in Solution and on Surfaces , 2008, SIAM J. Sci. Comput..

[17]  Dan V. Nicolau,et al.  Stochastic Simulation for Spatial Modelling of Dynamic Processes in a Living Cell , 2011 .

[18]  J. Elf,et al.  Spontaneous separation of bi-stable biochemical systems into spatial domains of opposite phases. , 2004, Systems biology.

[19]  George E. Kimball,et al.  Diffusion-controlled reaction rates , 1949 .

[20]  Michel Dumontier,et al.  GridCell: a stochastic particle-based biological system simulator , 2008, BMC Systems Biology.

[21]  N. Kampen,et al.  Stochastic processes in physics and chemistry , 1981 .

[22]  O. Berg A model for the statistical fluctuations of protein numbers in a microbial population. , 1978, Journal of theoretical biology.

[23]  R. Erban,et al.  Stochastic modelling of reaction–diffusion processes: algorithms for bimolecular reactions , 2009, Physical biology.

[24]  S. Plimpton,et al.  Microbial cell modeling via reacting diffusive particles , 2005 .