A Geometric Theory for Analysis and Synthesis of Sub-6 DoF Parallel Manipulators

Mechanism synthesis is mostly dependent on the designer's experience and intuition and is difficult to automate. This paper aims to develop a rigorous and precise geometric theory for analysis and synthesis of sub-6 DoF (or lower mobility) parallel manipulators. Using Lie subgroups and submanifolds of the special Euclidean group SE(3), we first develop a unified framework for modelling commonly used primitive joints and task spaces. We provide a mathematically rigorous definition of the notion of motion type using conjugacy classes. Then, we introduce a new structure for subchains of parallel manipulators using the product of two subgroups of SE(3) and discuss its realization in terms of the primitive joints. We propose the notion of quotient manipulators that substantially enriches the topologies of serial manipulators. Finally, we present a general procedure for specifying the subchain structures given the desired motion type of a parallel manipulator. The parallel mechanism synthesis problem is thus solved using the realization techniques developed for serial manipulators. Generality of the theory is demonstrated by systematically generating a large class of feasible topologies for (parallel or serial) mechanisms with a desired motion type of either a Lie subgroup or a submanifold.

[1]  Septimiu E. Salcudean,et al.  Optimal kinematic design of a haptic pen , 2001 .

[2]  Frank Chongwoo Park,et al.  Design and analysis of a redundantly actuated parallel mechanism for rapid machining , 2001, IEEE Trans. Robotics Autom..

[3]  Pavel Winternitz,et al.  Subgroups of the Euclidean group and symmetry breaking in nonrelativistic quantum mechanics , 1977 .

[4]  W. Boothby An introduction to differentiable manifolds and Riemannian geometry , 1975 .

[5]  M. J. D. Hayes,et al.  Reciprocating excitation of a flexible beam : Benchmark study , 2006 .

[6]  Hui Zhao,et al.  New kinematic structures for 2-, 3-, 4-, and 5-DOF parallel manipulator designs , 2002 .

[7]  Clément Gosselin,et al.  Type synthesis of 3T1R 4-DOF parallel manipulators based on screw theory , 2004, IEEE Transactions on Robotics and Automation.

[8]  Clément Gosselin,et al.  On the Kinematic Design of Spherical Three-Degree-of- Freedom Parallel Manipulators , 1993, Int. J. Robotics Res..

[9]  J. Angeles The Qualitative Synthesis of Parallel Manipulators , 2004 .

[10]  R. Clavel,et al.  A Fast Robot with Parallel Geometry , 1988 .

[11]  Jacques M. Hervé,et al.  The mathematical group structure of the set of displacements , 1994 .

[12]  O. Company,et al.  H4: a new family of 4-DOF parallel robots , 1999, 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat. No.99TH8399).

[13]  J. M. Hervé,et al.  Structural synthesis of 'parallel' robots generating spatial translation , 1991, Fifth International Conference on Advanced Robotics 'Robots in Unstructured Environments.

[14]  Zexiang Li,et al.  Singularities of parallel manipulators: a geometric treatment , 2003, IEEE Trans. Robotics Autom..

[15]  Qinchuan Li,et al.  Type synthesis of 3R2T 5-DOF parallel mechanisms using the Lie group of displacements , 2004, IEEE Transactions on Robotics and Automation.

[16]  C. Gosselin,et al.  The optimum kinematic design of a spherical three-degree-of-freedom parallel manipulator , 1988 .

[17]  Roger W. Brockett,et al.  Kinematic Dexterity of Robotic Mechanisms , 1994, Int. J. Robotics Res..

[18]  Z. Huang,et al.  Type Synthesis of Symmetrical Lower-Mobility Parallel Mechanisms Using the Constraint-Synthesis Method , 2003, Int. J. Robotics Res..

[19]  Vijay Kumar,et al.  Instantaneous Kinematics of Parallel-Chain Robotic Mechanisms , 1992 .

[20]  Lung-Wen Tsai,et al.  Kinematics of A Three-Dof Platform with Three Extensible Limbs , 1996 .

[21]  Q. C. Li,et al.  General Methodology for Type Synthesis of Symmetrical Lower-Mobility Parallel Manipulators and Several Novel Manipulators , 2002, Int. J. Robotics Res..

[22]  Clément Gosselin,et al.  Stiffness mapping for parallel manipulators , 1990, IEEE Trans. Robotics Autom..

[23]  Clément Gosselin,et al.  A Global Performance Index for the Kinematic Optimization of Robotic Manipulators , 1991 .

[24]  Hieu Minh Trinh,et al.  High-Precision Five-Axis Machine for High-Speed Material Processing Using Linear Motors and Parallel-Serial Kinematics , 2006, 2006 IEEE Conference on Emerging Technologies and Factory Automation.

[25]  J. M. Hervé,et al.  Translational parallel manipulators with doubly planar limbs , 2006 .

[26]  Jacques Marie Hervé,et al.  Uncoupled actuation of pan-tilt wrists , 2006, IEEE Transactions on Robotics.

[27]  Xin-Jun Liu,et al.  A new family of spatial 3-DoF fully-parallel manipulators with high rotational capability , 2005 .

[28]  J. M. Hervé,et al.  Asymmetrical three-DOFs rotational-translational parallel-kinematics mechanisms based on lie group theory , 2006 .

[29]  Lung-Wen Tsai,et al.  Kinematic Analysis of 3-DOF Position Mechanisms for Use in Hybrid Kinematic Machines , 2002 .

[30]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[31]  C. Gosselin Determination of the Workspace of 6-DOF Parallel Manipulators , 1990 .

[32]  Adolf Karger,et al.  Space kinematics and Lie groups , 1985 .

[33]  C. Galletti,et al.  Metric Relations and Displacement Groups in Mechanism and Robot Kinematics , 1995 .

[34]  Yuefa Fang,et al.  Structure Synthesis of a Class of 4-DoF and 5-DoF Parallel Manipulators with Identical Limb Structures , 2002, Int. J. Robotics Res..

[35]  Clément Gosselin,et al.  Singularity analysis of closed-loop kinematic chains , 1990, IEEE Trans. Robotics Autom..

[36]  Tian Huang,et al.  Stiffness estimation of a tripod-based parallel kinematic machine , 2002, IEEE Trans. Robotics Autom..

[37]  Jean-Pierre Merlet,et al.  Singular Configurations of Parallel Manipulators and Grassmann Geometry , 1988, Int. J. Robotics Res..

[38]  Mourad Karouia,et al.  New Parallel Wrists: Special Limbs with Motion Dependency , 2004 .

[39]  Clément Gosselin,et al.  Type Synthesis of Three-Degree-of-Freedom Spherical Parallel Manipulators , 2004, Int. J. Robotics Res..

[40]  J. M. Hervé,et al.  A Family of Novel Orientational 3-DOF Parallel Robots , 2002 .

[41]  Yuefa Fang,et al.  Structure synthesis of a class of 3-DOF rotational parallel manipulators , 2004, IEEE Transactions on Robotics and Automation.

[42]  A. W. Knapp Lie groups beyond an introduction , 1988 .

[43]  François Pierrot,et al.  H4 parallel robot: modeling, design and preliminary experiments , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[44]  R. Mrugala,et al.  Lie Groups Beyond an Introduction, 2nd Edition, Anthony W. Knapp, in: Birkhäuser Series: Progress in Mathematics, Vol. 140. Birkhäuser, Boston Basel Berlin (2002), xviii+812 pp., CHF 138.-/EUR 88 (hardcover)., ISBN: 0-8176-4259-5 , 2005 .

[45]  Vijay Kumar,et al.  Characterization of Workspaces of Parallel Manipulators , 1992 .

[46]  Janusz,et al.  Geometrical Methods in Robotics , 1996, Monographs in Computer Science.

[47]  J. Hervé Analyse structurelle des mcanismes par groupe des dplacements , 1978 .

[48]  Jean-Pierre Merlet,et al.  Direct kinematics of parallel manipulators , 1993, IEEE Trans. Robotics Autom..