“Playing around” with Field-Effect Sensors on the Basis of EIS Structures, LAPS and ISFETs

Microfabricated semiconductor devices are becoming increasingly relevant, also for the detection of biological and chemical quantities. Especially, the “marriage” of biomolecules and silicon technology often yields successful new sensor concepts. The fabrication techniques of such silicon-based chemical sensors and biosensors, respectively, will have a distinct impact in different fields of application such as medicine, food technology, environment, chemistry and biotechnology as well as information processing. Moreover, scientists and engineers are interested in the analytical benefits of miniaturised and microfabricated sensor devices. This paper gives a survey on different types of semiconductor-based field-effect structures that have been recently developed in our laboratory.

[1]  Joseph Wang,et al.  Strategies of Miniaturised Reference Electrodes Integrated in a Silicon Based “one chip” pH Sensor , 2003 .

[2]  M. J. Schöninga,et al.  A capacitive field-effect sensor for the direct determination of organophosphorus pesticides , 2003 .

[3]  J. W. Schultze,et al.  Multi-parameter detection of (bio-)chemical and physical quantities using an identical transducer principle , 2003 .

[4]  S. Schütz,et al.  An insect-based BioFET as a bioelectronic nose , 2000 .

[5]  M. Schöning,et al.  Recent advances in biologically sensitive field-effect transistors (BioFETs). , 2002, The Analyst.

[6]  Michael J. Schöning,et al.  A dual amperometric/potentiometric FIA-based biosensor for the distinctive detection of organophosphorus pesticides , 2003 .

[7]  Hans Lueth,et al.  Novel concept for flow-rate and flow-direction determination by means of pH-sensitive ISFETs , 2001, MOEMS-MEMS.

[8]  Michael J. Schöning,et al.  Biosensoric detection of the cysteine sulphoxide alliin , 2003 .

[9]  Peter Kordos,et al.  Porous silicon as a substrate material for potentiometric biosensors , 1996 .

[10]  J. W. Schultze,et al.  Application of a (bio-)chemical sensor (ISFET) for the detection of physical parameters in liquids , 2003 .

[11]  P Bergveld,et al.  Development of an ion-sensitive solid-state device for neurophysiological measurements. , 1970, IEEE transactions on bio-medical engineering.

[12]  Hiroshi Iwasaki,et al.  Constant-Current-Mode LAPS (CLAPS) for the Detectionof Penicillin , 2001 .

[13]  J. W. Parce,et al.  Light-addressable potentiometric sensor for biochemical systems. , 1988, Science.

[14]  Hiroshi Iwasaki,et al.  Immobilization of Urease and Cholinesterase on the Surface of Semiconductor Transducer for the Development of Light-Addressable Potentiometric Sensors , 2004 .

[15]  Hiroshi Iwasaki,et al.  Investigation of pulsed laser-deposited Al2O3 as a high pH-sensitive layer for LAPS-based biosensing applications , 2000 .

[16]  H E Hummel,et al.  Insect-based BioFETs with improved signal characteristics. , 1999, Biosensors & bioelectronics.

[17]  Michael J. Schöning,et al.  The Use of Insect Chemoreceptors for the Assembly of Biosensors Based on Semiconductor Field-Effect Transistors , 2000 .

[18]  Michael J. Schöning,et al.  Penicillin detection by means of silicon-based field-effect structures , 2001 .

[19]  Michael J. Schöning,et al.  Chemical sensor as physical sensor: ISFET-based flow-velocity, flow-direction and diffusion-coefficient sensor , 2003 .

[20]  H. Lüth,et al.  A (Bio-)Chemical Field-Effect Sensor with Macroporous Si as Substrate Material and a SiO2 / LPCVD-Si3N4 Double Layer as pH Transducer , 2002 .

[21]  Hiroshi Iwasaki,et al.  Alternative sensor materials for light-addressable potentiometric sensors , 2001 .

[22]  J Janata Chemical sensors. , 1990, Analytical chemistry.

[23]  John G. Webster,et al.  The Measurement, Instrumentation and Sensors Handbook , 1998 .

[24]  Hans Lueth,et al.  Insect chemoreceptors coupled to silicon transistors as innovative biosensors , 2001, SPIE Optics East.

[25]  Michael J. Schöning,et al.  Flow-velocity Microsensors Based on Semiconductor Fieldeffect Structures , 2003 .

[26]  Michael J. Schöning,et al.  Evaluation of a Chip-Based Thin-Film / Thick-Film Sensor Hybrid for (Bio-)Chemical Analysis , 2002 .

[27]  Hiroshi Iwasaki,et al.  Photocurable membranes for ion-selective light-addressable potentiometric sensor , 2002 .

[28]  Michael J. Schöning,et al.  An ISFET-based penicillin sensor with high sensitivity, low detection limit and long lifetime , 2001 .

[29]  Peter Kordos,et al.  Enzyme immobilisation on planar and porous silicon substrates for biosensor applications , 1999 .

[30]  Peter Kordos,et al.  Cross-sensitivity of a capacitive penicillin sensor combined with a diffusion barrier , 2000 .

[31]  Peter Kordos,et al.  Novel electrochemical sensors with structured and porous semiconductor/insulator capacitors , 2000 .

[32]  M. Klein,et al.  Characterization of ion-sensitive layer systems with a C( V) measurement method operating at constant capacitance , 1990 .

[33]  Y. Vlasov,et al.  The double K+/Ca2+ sensor based on laser scanned silicon transducer (LSST) for multi-component analysis. , 2003, Talanta.

[34]  Michael J. Schöning,et al.  Measuring Seven Parameters By Two Isfet-Modules In A Microcell Set-Up , 2003, Int. J. Comput. Eng. Sci..

[35]  Hiroshi Iwasaki,et al.  Anion-selective light-addressable potentiometric sensors (LAPS) for the determination of nitrate and sulphate ions , 2003 .

[36]  Ashok Mulchandani,et al.  Flow injection amperometric detection of OP nerve agents based on an organophosphorus-hydrolase biosensor detector. , 2003, Biosensors & bioelectronics.

[37]  Peter Kordos,et al.  A novel silicon-based sensor array with capacitive EIS structures , 1998 .

[38]  J. W. Schultze,et al.  Capacitive microsensors for biochemical sensing based on porous silicon technology , 2000 .

[39]  J. W. Schultze,et al.  Micro- and nanopatterning of sensor chips by means of macroporous silicon , 2002 .

[40]  R. Cattrall Chemical Sensors , 1997 .

[41]  Willi Zander,et al.  Can pulsed laser deposition serve as an advanced technique in fabricating chemical sensors , 2001 .

[42]  Hiroshi Iwasaki,et al.  K+-selective field-effect sensors as transducers for bioelectronic applications , 2003 .

[43]  Karl-Heinz Hoffmann Coupling of Biological and Electronic Systems , 2002 .

[44]  Salvador Alegret,et al.  Integrated Analytical Systems , 2003 .

[45]  Michael J. Schöning,et al.  Towards a Capacitive Enzyme Sensor for Direct Determination of Organophosphorus Pesticides: Fundamental Studies and Aspects of Development , 2003 .

[46]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[47]  Michael J. Schöning,et al.  Penicillin detection by means of field-effect based sensors: EnFET, capacitive EIS sensor or LAPS? , 2001 .

[48]  A. Berg,et al.  Micro Total Analysis Systems: Microfluidic Aspects, Integration Concept and Applications , 1997 .

[49]  Willi Zander,et al.  A highly long-term stable silicon-based pH sensor fabricated by pulsed laser deposition technique , 1996 .

[50]  Michael Keusgen,et al.  Development of a biosensor specific for cysteine sulfoxides. , 2003, Biosensors & bioelectronics.

[51]  S. Shoji Micro Total Analysis Systems , 1999 .

[52]  Wilfred Chen,et al.  Dual amperometric–potentiometric biosensor detection system for monitoring organophosphorus neurotoxins , 2002 .

[53]  Michael J. Schöning,et al.  A long-term stable macroporous-type EIS structure for electrochemical sensor applications , 2003 .

[54]  Hans Lueth,et al.  Field-effect-based multifunctional hybrid sensor module for the determination of both (bio-)chemical and physical parameters , 2002, SPIE Optics East.

[55]  Michael J. Schöning,et al.  Chapter 14 ‘High-order’ hybrid FET module for (bio)chemical and physical sensing , 2003 .

[56]  Willi Zander,et al.  Pulsed Laser Deposition – An Innovative Technique for Preparing Inorganic Thin Films , 2001 .

[57]  J. W. Schultze,et al.  Miniaturization of potentiometric sensors using porous silicon microtechnology , 1997 .

[58]  Michael J. Schöning,et al.  Extending the capabilities of an antenna/chip biosensor by employing various insect species , 2001 .

[59]  Peter Kordos,et al.  A BIOFET ON THE BASIS OF INTACT INSECT ANTENNAE , 1998 .

[60]  Hiroshi Iwasaki,et al.  Lithium sensor based on the laser scanning semiconductor transducer , 2002 .

[61]  M Sch√∂ning Novel approaches to design silicon-based field-effect sensors , 2002 .

[62]  Michael J. Schöning,et al.  Novel Concepts for Silicon‐Based Biosensors , 2001 .

[63]  Peter Kordos,et al.  Coupling of insect antennae to field-effect transistors for biochemical sensing , 1999 .

[64]  Michael J. Schöning,et al.  Direct determination of cyanides by potentiometric biosensors , 2004 .

[65]  Stefan Schütz,et al.  FIELD EFFECT TRANSISTOR-INSECT ANTENNA JUNCTION , 1997 .

[66]  Hiroshi Iwasaki,et al.  Portable light-addressable potentiometric sensor (LAPS) for multisensor applications , 2003 .

[67]  Joseph Wang,et al.  A „Hybrid“ Thin-Film pH Sensor with Integrated Thick-Film Reference , 2001 .

[68]  H. Lüth,et al.  A long-term stable penicillin-sensitive potentiometric biosensor with enzyme immobilized by heterobifunctional cross-linking , 1996 .