Role of Parafacial Nuclei in Control of Breathing in Adult Rats

Contiguous brain regions associated with a given behavior are increasingly being divided into subregions associated with distinct aspects of that behavior. Using recently developed neuronal hyperpolarizing technologies, we functionally dissect the parafacial region in the medulla, which contains key elements of the central pattern generator for breathing that are important in central CO2-chemoreception and for gating active expiration. By transfecting different populations of neighboring neurons with allatostatin or HM4D Gi/o-coupled receptors, we analyzed the effect of their hyperpolarization on respiration in spontaneously breathing vagotomized urethane-anesthetized rats. We identify two functionally separate parafacial nuclei: ventral (pFV) and lateral (pFL). Disinhibition of the pFL with bicuculline and strychnine led to active expiration. Hyperpolarizing pFL neurons had no effect on breathing at rest, or changes in inspiratory activity induced by hypoxia and hypercapnia; however, hyperpolarizing pFL neurons attenuated active expiration when it was induced by hypercapnia, hypoxia, or disinhibition of the pFL. In contrast, hyperpolarizing pFV neurons affected breathing at rest by decreasing inspiratory-related activity, attenuating the hypoxia- and hypercapnia-induced increase in inspiratory activity, and when present, reducing expiratory-related abdominal activity. Together with previous observations, we conclude that the pFV provides a generic excitatory drive to breathe, even at rest, whereas the pFL is a conditional oscillator quiet at rest that, when activated, e.g., during exercise, drives active expiration.

[1]  S. Liggett,et al.  Modification of the β2-Adrenergic Receptor to Engineer a Receptor-Effector Complex for Gene Therapy* , 2001, The Journal of Biological Chemistry.

[2]  Emmanuel Hermans,et al.  Biochemical and pharmacological control of the multiplicity of coupling at G-protein-coupled receptors. , 2003, Pharmacology & therapeutics.

[3]  Katherine J Lobur,et al.  A genetic approach to access serotonin neurons for in vivo and in vitro studies. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[4]  E. Nattie,et al.  CO(2) microdialysis in retrotrapezoid nucleus of the rat increases breathing in wakefulness but not in sleep. , 1999, Journal of applied physiology.

[5]  J. Pappenheimer Sleep and respiration of rats during hypoxia. , 1977, The Journal of physiology.

[6]  E. Nattie,et al.  CO2 dialysis in nucleus tractus solitarius region of rat increases ventilation in sleep and wakefulness. , 2002, Journal of applied physiology.

[7]  E. Nattie,et al.  CO2 dialysis in the medullary raphe of the rat increases ventilation in sleep. , 2001, Journal of applied physiology.

[8]  Lars Fugger,et al.  Control of hypothalamic orexin neurons by acid and CO2 , 2007, Proceedings of the National Academy of Sciences.

[9]  B. Roth Drugs and valvular heart disease. , 2007, The New England journal of medicine.

[10]  E. Nattie,et al.  Acetazolamide on the ventral medulla of the cat increases phrenic output and delays the ventilatory response to CO2. , 1991, The Journal of physiology.

[11]  S. Majumdar,et al.  Conditional expression of a Gi-coupled receptor in osteoblasts results in trabecular osteopenia. , 2008, Endocrinology.

[12]  W. Milsom The phylogeny of central chemoreception , 2010, Respiratory Physiology & Neurobiology.

[13]  T. Bradley,et al.  Update in sleep and control of ventilation 2006. , 2007, American journal of respiratory and critical care medicine.

[14]  G. Burnstock,et al.  Purinergic signalling in autonomic control , 2009, Trends in Neurosciences.

[15]  D. Ballantyne,et al.  Chemosensitive medullary neurones in the brainstem‐‐spinal cord preparation of the neonatal rat. , 1996, The Journal of physiology.

[16]  S. Schreiber,et al.  Controlling signal transduction with synthetic ligands. , 1993, Science.

[17]  W. O. Friesen,et al.  Hypoxic ventilatory drive in normal man. , 1970, The Journal of clinical investigation.

[18]  J. Erlichman,et al.  Ventilatory effects of glial dysfunction in a rat brain stem chemoreceptor region. , 1998, Journal of applied physiology.

[19]  A. Baker,et al.  Expression of a Gi-coupled receptor in the heart causes impaired Ca2+ handling, myofilament injury, and dilated cardiomyopathy. , 2008, American journal of physiology. Heart and circulatory physiology.

[20]  J. Feldman,et al.  Projections of preBötzinger Complex neurons in adult rats , 2010, The Journal of comparative neurology.

[21]  Bryan L Roth,et al.  Galpha-subunits differentially alter the conformation and agonist affinity of kappa-opioid receptors. , 2008, Biochemistry.

[22]  E. Deneris,et al.  Redefining the serotonergic system by genetic lineage , 2008, Nature Neuroscience.

[23]  K. Svoboda,et al.  Genetic Dissection of Neural Circuits , 2008, Neuron.

[24]  R. Stornetta,et al.  Distribution of glutamic acid decarboxylase mRNA‐containing neurons in rat medulla projecting to thoracic spinal cord in relation to monoaminergic brainstem neurons , 1999, The Journal of comparative neurology.

[25]  G. Richerson,et al.  Re: Retrotrapezoid nucleus: a litmus test for the identification of central chemoreceptors , 2005 .

[26]  P. Sótonyi,et al.  Increase in functional activity rather than in amount of Gi-alpha in failing human heart with dilated cardiomyopathy. , 1992, Cardiovascular research.

[27]  Practice makes perfect, even for breathing , 2009, Nature Neuroscience.

[28]  E. Nattie,et al.  Central chemoreception in wakefulness and sleep: evidence for a distributed network and a role for orexin. , 2010, Journal of applied physiology.

[29]  Ikuo Homma,et al.  A Novel Functional Neuron Group for Respiratory Rhythm Generation in the Ventral Medulla , 2003, The Journal of Neuroscience.

[30]  M. Gossen,et al.  Tight control of gene expression in mammalian cells by tetracycline-responsive promoters. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[31]  J. Dempsey,et al.  Measurement of the CO2 apneic threshold. , 2003, American journal of respiratory and critical care medicine.

[32]  L. Birnbaumer,et al.  Adenyl cyclase in fat cells. II. Hormone receptors. , 1969, The Journal of biological chemistry.

[33]  Robert T. R. Huckstepp,et al.  Redefining the components of central CO2 chemosensitivity – towards a better understanding of mechanism , 2011, The Journal of physiology.

[34]  D. Millhorn,et al.  CO2 decreases membrane conductance and depolarizes neurons in the nucleus tractus solitarii , 2004, Experimental Brain Research.

[35]  J. Erlichman,et al.  Ventilatory effects of impaired glial function in a brain stem chemoreceptor region in the conscious rat. , 2001, Journal of applied physiology.

[36]  D. Sibley,et al.  Binding of typical and atypical antipsychotic agents to 5-hydroxytryptamine-6 and 5-hydroxytryptamine-7 receptors. , 1994, The Journal of pharmacology and experimental therapeutics.

[37]  B. Conklin,et al.  Conditional expression and signaling of a specifically designed Gi-coupled receptor in transgenic mice , 1999, Nature Biotechnology.

[38]  K. Deisseroth,et al.  Active Expiration Induced by Excitation of Ventral Medulla in Adult Anesthetized Rats , 2011, The Journal of Neuroscience.

[39]  L. Josefsson,et al.  Evidence for kinship between diverse G-protein coupled receptors. , 1999, Gene.

[40]  L. Fagni,et al.  Mont Sainte‐Odile: a sanctuary for GPCRs , 2003 .

[41]  F. Portillo,et al.  Distribution of bulbospinal neurons supplying bilateral innervation to the phrenic nucleus in the rat , 1992, Brain Research.

[42]  E. Nattie,et al.  Inhibition of medullary raphe serotonergic neurons has age-dependent effects on the CO2 response in newborn piglets. , 2004, Journal of applied physiology.

[43]  H. Forster,et al.  Ventilatory responses to cooling the ventrolateral medullary surface of awake and anesthetized goats. , 1995, Journal of applied physiology.

[44]  G. Richerson,et al.  Medullary serotonin neurons and their roles in central respiratory chemoreception , 2010, Respiratory Physiology & Neurobiology.

[45]  H. Forster Plasticity in the control of breathing following sensory denervation. , 2003, Journal of applied physiology.

[46]  Ikuo Homma,et al.  Opioid‐resistant respiratory pathway from the preinspiratory neurones to abdominal muscles: in vivo and in vitro study in the newborn rat , 2002, The Journal of physiology.

[47]  Bryan L Roth,et al.  G-protein-coupled receptors at a glance , 2003, Journal of Cell Science.

[48]  R. Stornetta,et al.  Peripheral chemoreceptor inputs to retrotrapezoid nucleus (RTN) CO2‐sensitive neurons in rats , 2006, The Journal of physiology.

[49]  J. Severinghaus,et al.  Respiratory responses mediated through superficial chemosensitive areas on the medulla , 1963, Journal of applied physiology.

[50]  B. Conklin,et al.  Development of Hydrocephalus in Mice Expressing the Gi-Coupled GPCR Ro1 RASSL Receptor in Astrocytes , 2007, The Journal of Neuroscience.

[51]  D. Mutolo,et al.  Modulation of the cough reflex by GABAA receptors in the caudal ventral respiratory group of the rabbit , 2012, Front. Physio..

[52]  H. Zoghbi,et al.  Atoh1-dependent rhombic lip neurons are required for temporal delay between independent respiratory oscillators in embryonic mice , 2014, eLife.

[53]  H. Akil,et al.  Controlling signaling with a specifically designed Gi-coupled receptor. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Rafael Yuste Circuit Neuroscience: The Road Ahead , 2008, Front. Neurosci..

[55]  B. Roth,et al.  Engineered GPCRs as tools to modulate signal transduction. , 2008, Physiology.

[56]  N. Ryba,et al.  The receptors and coding logic for bitter taste , 2005, Nature.

[57]  J. Leiter,et al.  Ontogeny of central CO2 chemoreception: chemosensitivity in the ventral medulla of developing bullfrogs. , 2003, American journal of physiology. Regulatory, integrative and comparative physiology.

[58]  E. Nattie,et al.  RTN TRH causes prolonged respiratory stimulation. , 1997, Journal of applied physiology.

[59]  J. Dempsey,et al.  An interdependent model of central/peripheral chemoreception: Evidence and implications for ventilatory control , 2010, Respiratory Physiology & Neurobiology.

[60]  Jeffrey C. Smith,et al.  Essential Role of Phox2b-Expressing Ventrolateral Brainstem Neurons in the Chemosensory Control of Inspiration and Expiration , 2010, The Journal of Neuroscience.

[61]  R. Putnam,et al.  The locus coeruleus and central chemosensitivity , 2010, Respiratory Physiology & Neurobiology.

[62]  B. Conklin,et al.  Engineering receptors activated solely by synthetic ligands (RASSLs). , 2001, Trends in pharmacological sciences.

[63]  D. Bayliss,et al.  Retrotrapezoid nucleus, respiratory chemosensitivity and breathing automaticity , 2009, Respiratory Physiology & Neurobiology.

[64]  J. Peever,et al.  Day-night differences in the respiratory response to hypercapnia in awake adult rats. , 1997, Respiration physiology.

[65]  Sheree M. Johnson,et al.  GFP-expressing locus ceruleus neurons from Prp57 transgenic mice exhibit CO2/H+ responses in primary cell culture. , 2008, Journal of applied physiology.

[66]  J. Leiter,et al.  Central chemoreceptor stimulus in the terrestrial, pulmonate snail, Helix aspersa. , 1994, Respiration physiology.

[67]  Bryan L Roth,et al.  Identification of the Molecular Mechanisms by Which the Diterpenoid Salvinorin A Binds to κ-Opioid Receptors† , 2005 .

[68]  H. Benveniste,et al.  Microdialysis—Theory and application , 1990, Progress in Neurobiology.

[69]  R. Putnam,et al.  Development of in vivo ventilatory and single chemosensitive neuron responses to hypercapnia in rats. , 2001, Respiration physiology.

[70]  E. Nattie,et al.  Catecholamine neurones in rats modulate sleep, breathing, central chemoreception and breathing variability , 2006, The Journal of physiology.

[71]  R. Putnam CO2 chemoreception in cardiorespiratory control. , 2010, Journal of applied physiology.

[72]  I. Wenker,et al.  Current ideas on central chemoreception by neurons and glial cells in the retrotrapezoid nucleus. , 2010, Journal of applied physiology.

[73]  E. Nattie,et al.  Central chemoreception is a complex system function that involves multiple brain stem sites. , 2009, Journal of applied physiology.

[74]  L. Branco,et al.  Brain monoaminergic neurons and ventilatory control in vertebrates , 2008, Respiratory Physiology & Neurobiology.

[75]  G. Paxinos,et al.  The Rat Brain in Stereotaxic Coordinates , 1983 .

[76]  N. Ryba,et al.  The Receptors for Mammalian Sweet and Umami Taste , 2003, Cell.

[77]  J. Mills,et al.  Kainic acid on the rostral ventrolateral medulla inhibits phrenic output and CO2 sensitivity. , 1988, Journal of applied physiology.

[78]  H. Chiel,et al.  Fast noninvasive activation and inhibition of neural and network activity by vertebrate rhodopsin and green algae channelrhodopsin. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[79]  H. Loeschcke,et al.  Ventilatory response to alterations of H+ ion concentration in small areas of the ventral medullary surface. , 1970, Respiration physiology.

[80]  E. Nattie,et al.  TRH microdialysis into the RTN of the conscious rat increases breathing, metabolism, and temperature. , 1999, Journal of applied physiology.

[81]  E. Nattie,et al.  Central chemoreception in the region of the ventral respiratory group in the rat. , 1996, Journal of applied physiology.

[82]  B. Conklin,et al.  Engineered G protein coupled receptors reveal independent regulation of internalization, desensitization and acute signaling , 2005, BMC Biology.

[83]  E. Deneris,et al.  Medullary serotonin neurons and central CO2 chemoreception , 2009, Respiratory Physiology & Neurobiology.

[84]  R. Stornetta,et al.  Photostimulation of channelrhodopsin‐2 expressing ventrolateral medullary neurons increases sympathetic nerve activity and blood pressure in rats , 2009, The Journal of physiology.

[85]  S. Coughlin,et al.  Anatomical Profiling of G Protein-Coupled Receptor Expression , 2008, Cell.

[86]  E. Nattie,et al.  The orexin receptor 1 (OX1R) in the rostral medullary raphe contributes to the hypercapnic chemoreflex in wakefulness, during the active period of the diurnal cycle , 2010, Respiratory Physiology & Neurobiology.

[87]  B. Roth,et al.  A highly conserved aspartic acid (Asp-155) anchors the terminal amine moiety of tryptamines and is involved in membrane targeting of the 5-HT(2A) serotonin receptor but does not participate in activation via a "salt-bridge disruption" mechanism. , 2000, The Journal of pharmacology and experimental therapeutics.

[88]  D. Ferguson,et al.  Molecular simulation of dynorphin A-(1-10) binding to extracellular loop 2 of the kappa-opioid receptor. A model for receptor activation. , 1997, Journal of medicinal chemistry.

[89]  J. Violin,et al.  β-Arrestin-biased ligands at seven-transmembrane receptors , 2007 .

[90]  V. Bach,et al.  Brain blood flow and extracerebral carotid circulation during sleep in rat , 1994, Brain Research.

[91]  E. Callaway A molecular and genetic arsenal for systems neuroscience , 2005, Trends in Neurosciences.

[92]  N. Mellen,et al.  Opioid-Induced Quantal Slowing Reveals Dual Networks for Respiratory Rhythm Generation , 2003, Neuron.

[93]  K. Deisseroth,et al.  Astrocytes Control Breathing Through pH-Dependent Release of ATP , 2010, Science.

[94]  E. Nattie,et al.  Focal CO2 dialysis in raphe obscurus does not stimulate ventilation but enhances the response to focal CO2 dialysis in the retrotrapezoid nucleus. , 2008, Journal of applied physiology.

[95]  C. Strader,et al.  A single amino acid substitution in the beta-adrenergic receptor promotes partial agonist activity from antagonists. , 1989, The Journal of biological chemistry.

[96]  Alexander V. Gourine,et al.  ATP is a mediator of chemosensory transduction in the central nervous system , 2005, Nature.

[97]  T. Bradley,et al.  Update in sleep and control of ventilation 2007. , 2008, American journal of respiratory and critical care medicine.

[98]  Y Wang,et al.  A regulatory system for use in gene transfer. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[99]  J. Bockaert,et al.  Molecular tinkering of G protein‐coupled receptors: an evolutionary success , 1999, The EMBO journal.

[100]  Robert T. R. Huckstepp,et al.  Connexin hemichannel‐mediated CO2‐dependent release of ATP in the medulla oblongata contributes to central respiratory chemosensitivity , 2010, The Journal of physiology.

[101]  M. Thoby-Brisson,et al.  Defective Respiratory Rhythmogenesis and Loss of Central Chemosensitivity in Phox2b Mutants Targeting Retrotrapezoid Nucleus Neurons , 2009, The Journal of Neuroscience.

[102]  E. Callaway,et al.  Selective and Quickly Reversible Inactivation of Mammalian Neurons In Vivo Using the Drosophila Allatostatin Receptor , 2006, Neuron.

[103]  R. Stornetta,et al.  Bötzinger Expiratory-Augmenting Neurons and the Parafacial Respiratory Group , 2008, The Journal of Neuroscience.

[104]  Keiko Ikeda,et al.  Phox2b, RTN/pFRG neurons and respiratory rhythmogenesis , 2009, Respiratory Physiology & Neurobiology.

[105]  G. Holstege,et al.  Pontine and medullary projections to the nucleus retroambiguus: A wheat germ agglutinin‐horseradish peroxidase and autoradiographic tracing study in the cat , 1996, The Journal of comparative neurology.

[106]  D. Megirian,et al.  Proprioceptive, chemoreceptive and sleep state modulation of expiratory muscle activity in the rat , 1988, Experimental Neurology.

[107]  D. Bayliss,et al.  Retrotrapezoid nucleus and central chemoreception , 2008, The Journal of physiology.

[108]  J. Dempsey,et al.  Peripheral chemoreceptors determine the respiratory sensitivity of central chemoreceptors to CO2 , 2010, The Journal of physiology.

[109]  Arthur Christopoulos,et al.  Functional Selectivity and Classical Concepts of Quantitative Pharmacology , 2007, Journal of Pharmacology and Experimental Therapeutics.

[110]  E. Nattie,et al.  Simultaneous inhibition of caudal medullary raphe and retrotrapezoid nucleus decreases breathing and the CO2 response in conscious rats , 2006, The Journal of physiology.

[111]  H. Ellenberger Distribution of bulbospinal γ‐aminobutyric acid‐synthesizing neurons of the ventral respiratory group of the rat , 1999, The Journal of comparative neurology.

[112]  H. Forster,et al.  The carotid chemoreceptors are a major determinant of ventilatory CO2 sensitivity and of PaCO2 during eupneic breathing. , 2008, Advances in experimental medicine and biology.

[113]  J. L. Feldman,et al.  Brainstem connections of the rostral ventral respiratory group of the rat , 1990, Brain Research.

[114]  J. Pappenheimer,et al.  ROLE OF CEREBRAL FLUIDS IN CONTROL OF RESPIRATION AS STUDIED IN UNANESTHETIZED GOATS. , 1965, The American journal of physiology.

[115]  H. Loeschcke Central chemosensitivity and the reaction theory. , 1982, The Journal of physiology.

[116]  J. C. Smith,et al.  Pre-Bötzinger complex: a brainstem region that may generate respiratory rhythm in mammals. , 1991, Science.

[117]  X. Wan,et al.  Building 3D-structural model of kappa opioid receptor and studying its interaction mechanism with dynorphin A(1-8). , 2000, Acta Pharmacologica Sinica.

[118]  D. Richter,et al.  Reverse physiology in Drosophila: identification of a novel allatostatin‐like neuropeptide and its cognate receptor structurally related to the mammalian somatostatin/galanin/opioid receptor family , 1999, The EMBO journal.

[119]  Y. Fukuda,et al.  Multiple components of the defense response depend on orexin: Evidence from orexin knockout mice and orexin neuron-ablated mice , 2006, Autonomic Neuroscience.

[120]  G. Aghajanian,et al.  Carbon dioxide regulates the tonic activity of locus coeruleus neurons by modulating a proton- and polyamine-sensitive inward rectifier potassium current , 1997, Neuroscience.

[121]  J C Smith,et al.  Brainstem projections to the major respiratory neuron populations in the medulla of the cat , 1989, The Journal of comparative neurology.

[122]  G. Richerson,et al.  The role of medullary serotonin (5-HT) neurons in respiratory control: contributions to eupneic ventilation, CO2 chemoreception, and thermoregulation. , 2010, Journal of applied physiology.

[123]  W. Kuschinsky,et al.  Glucose utilization, blood flow and capillary density in the ventrolateral medulla of the rat , 1990, Pflügers Archiv.

[124]  R. Dampney The Subretrofacial Nucleus: Its Pivotal Role in Cardiovascular Regulation , 1990 .

[125]  D. Bayliss,et al.  Retrotrapezoid nucleus: a litmus test for the identification of central chemoreceptors. , 2005, Experimental physiology.

[126]  B. Conklin,et al.  Modifying Ligand-Induced and Constitutive Signaling of the Human 5-HT4 Receptor , 2007, PloS one.

[127]  B. Roth,et al.  New Insights into the Function of M4 Muscarinic Acetylcholine Receptors Gained Using a Novel Allosteric Modulator and a DREADD (Designer Receptor Exclusively Activated by a Designer Drug) , 2008, Molecular Pharmacology.

[128]  Jeffrey C. Smith,et al.  Transgenic Mice Lacking Serotonin Neurons Have Severe Apnea and High Mortality during Development , 2009, The Journal of Neuroscience.

[129]  E. Nattie,et al.  Antagonism of orexin receptor‐1 in the retrotrapezoid nucleus inhibits the ventilatory response to hypercapnia predominantly in wakefulness , 2009, The Journal of physiology.

[130]  H. Heller,et al.  Development of REM and slow wave sleep in the rat. , 1997, The American journal of physiology.

[131]  J. Feldman,et al.  Understanding the rhythm of breathing: so near, yet so far. , 2013, Annual review of physiology.

[132]  C. Homcy,et al.  G Proteins in the Heart: A Redundant and Diverse Transmembrane Signaling Network , 1991, Circulation.

[133]  G. Richerson Response to CO2 of neurons in the rostral ventral medulla in vitro. , 1995, Journal of neurophysiology.

[134]  M. Elam,et al.  Hypercapnia and hypoxia: Chemoreceptor-mediated control of locus coeruleus neurons and splanchnic, sympathetic nerves , 1981, Brain Research.

[135]  E. Callaway,et al.  Silencing preBötzinger Complex somatostatin-expressing neurons induces persistent apnea in awake rat , 2008, Nature Neuroscience.

[136]  H. Forster,et al.  Effects on breathing of ventrolateral medullary cooling in awake goats. , 1995, Journal of applied physiology.

[137]  Russell S. Ray,et al.  Impaired Respiratory and Body Temperature Control Upon Acute Serotonergic Neuron Inhibition , 2011, Science.

[138]  J. Leiter,et al.  Glia modulation of the extracellular milieu as a factor in central CO2 chemosensitivity and respiratory control. , 2010, Journal of applied physiology.

[139]  E. Nattie,et al.  High CO2/H+ dialysis in the caudal ventrolateral medulla (Loeschcke's area) increases ventilation in wakefulness , 2010, Respiratory Physiology & Neurobiology.

[140]  A. Takakura,et al.  Activation of 5‐hydroxytryptamine type 3 receptor‐expressing C‐fiber vagal afferents inhibits retrotrapezoid nucleus chemoreceptors in rats , 2007, Journal of neurophysiology.

[141]  U. Gether Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. , 2000, Endocrine reviews.

[142]  D. Bayliss,et al.  Serotonergic Neurons Activate Chemosensitive Retrotrapezoid Nucleus Neurons by a pH-Independent Mechanism , 2007, The Journal of Neuroscience.

[143]  M. Thoby-Brisson,et al.  Phox2b, congenital central hypoventilation syndrome and the control of respiration. , 2010, Seminars in cell & developmental biology.

[144]  H. Gautier,et al.  Ventilatory and metabolic responses to cold and CO2 in intact and carotid body-denervated awake rats. , 1993, Journal of applied physiology.

[145]  J. Leiter,et al.  Neonatal maturation of the hypercapnic ventilatory response and central neural CO2 chemosensitivity , 2005, Respiratory Physiology & Neurobiology.

[146]  P. Pauwels Unravelling multiple ligand-activation binding sites using RASSL receptors. , 2003, Trends in pharmacological sciences.

[147]  E. Nattie,et al.  Widespread sites of brain stem ventilatory chemoreceptors. , 1993, Journal of applied physiology.

[148]  R. Stornetta,et al.  Central CO2 chemoreception and integrated neural mechanisms of cardiovascular and respiratory control. , 2010, Journal of applied physiology.

[149]  E. Nattie,et al.  Neurokinin-1 receptor-expressing neurons in the ventral medulla are essential for normal central and peripheral chemoreception in the conscious rat. , 2006, Journal of applied physiology.

[150]  P. Salmi,et al.  Further evidence for clozapine as a dopamine D1 receptor agonist. , 1996, European journal of pharmacology.

[151]  A. Gourine On the peripheral and central chemoreception and control of breathing: an emerging role of ATP , 2005, The Journal of physiology.

[152]  M. Kondo,et al.  Distribution of glycine transporter 2 mRNA-containing neurons in relation to glutamic acid decarboxylase mRNA-containing neurons in rat medulla , 2003, Neuroscience Research.

[153]  J. Severinghaus,et al.  Hans Loeschcke, Robert Mitchell and the medullary CO2 chemoreceptors: a brief historical review. , 1998, Respiration physiology.

[154]  G. Richerson,et al.  Serotonergic neurons as carbon dioxide sensors that maintain ph homeostasis , 2004, Nature Reviews Neuroscience.

[155]  L. Gargaglioni,et al.  Locus coeruleus noradrenergic neurons and CO2 drive to breathing , 2008, Pflügers Archiv - European Journal of Physiology.

[156]  P. Pasquis,et al.  Upper airway resistance during progressive hypercapnia and progressive hypoxia in normal awake subjects. , 2000, Respiration physiology.

[157]  Yoshitaka Oku,et al.  Postnatal developmental changes in activation profiles of the respiratory neuronal network in the rat ventral medulla , 2007, The Journal of physiology.

[158]  J. Leiter,et al.  ATP, glia and central respiratory control , 2010, Respiratory Physiology & Neurobiology.

[159]  I. Solomon Focal CO2/H+ alters phrenic motor output response to chemical stimulation of cat pre-Botzinger complex in vivo. , 2003, Journal of applied physiology.

[160]  R. Pásaro,et al.  Brainstem connections of the rat ventral respiratory subgroups: afferent projections. , 1993, Journal of the autonomic nervous system.

[161]  J. Gallego,et al.  Phox2b controls the development of peripheral chemoreceptors and afferent visceral pathways , 2003, Development.

[162]  E. Nattie,et al.  Evidence for central chemoreception in the midline raphé. , 1996, Journal of applied physiology.

[163]  R. Evans,et al.  Ecdysone-inducible gene expression in mammalian cells and transgenic mice. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[164]  K. Ikeda,et al.  CO2-Sensitive Preinspiratory Neurons of the Parafacial Respiratory Group Express Phox2b in the Neonatal Rat , 2008, The Journal of Neuroscience.

[165]  D. Bayliss,et al.  Anesthetic Activation of Central Respiratory Chemoreceptor Neurons Involves Inhibition of a THIK-1-Like Background K+ Current , 2010, The Journal of Neuroscience.

[166]  Michel Simonneau,et al.  Modulation of the respiratory rhythm generator by the pontine noradrenergic A5 and A6 groups in rodents , 2004, Respiratory Physiology & Neurobiology.

[167]  R. Stornetta,et al.  Activation of the retrotrapezoid nucleus by posterior hypothalamic stimulation , 2009, The Journal of physiology.

[168]  H. Forster,et al.  Effects on breathing of focal acidosis at multiple medullary raphe sites in awake goats. , 2004, Journal of applied physiology.

[169]  E. Nattie,et al.  CO2 dialysis in one chemoreceptor site, the RTN: stimulus intensity and sensitivity in the awake rat , 2002, Respiratory Physiology & Neurobiology.

[170]  E. R. Sutherland,et al.  Targeting the Distal Lung in Asthma , 2005 .

[171]  Takashi Nakamura,et al.  Deficiency of the G-protein α-Subunit Gsα in Osteoblasts Leads to Differential Effects on Trabecular and Cortical Bone* , 2005, Journal of Biological Chemistry.

[172]  J P Jacky,et al.  A plethysmograph for long-term measurements of ventilation in unrestrained animals. , 1978, Journal of applied physiology: respiratory, environmental and exercise physiology.

[173]  M. Iizuka,et al.  Influence of hypercapnic acidosis and hypoxia on abdominal expiratory nerve activity in the rat , 2007, Respiratory Physiology & Neurobiology.

[174]  W. Dunin-Barkowski,et al.  Effect of hypercapnia on sleep and breathing in unanesthetized cats. , 2008, Sleep.

[175]  E. Nattie,et al.  Medullary serotonergic neurones modulate the ventilatory response to hypercapnia, but not hypoxia in conscious rats , 2005, The Journal of physiology.

[176]  Glenn J Tattersall,et al.  Defects in Breathing and Thermoregulation in Mice with Near-Complete Absence of Central Serotonin Neurons , 2008, The Journal of Neuroscience.

[177]  J. Wess,et al.  Engineering GPCR signaling pathways with RASSLs , 2008, Nature Methods.

[178]  B. Conklin,et al.  Engineering the Melanocortin‐4 Receptor to Control Gs Signaling in Vivo , 2003, Annals of the New York Academy of Sciences.

[179]  M. Carroll,et al.  Congenital central hypoventilation syndrome and the PHOX2B gene: A model of respiratory and autonomic dysregulation , 2010, Respiratory Physiology & Neurobiology.

[180]  L. Kubin,et al.  Journal of Applied Physiology publishes original papers that deal with diverse area of research in applied , 2008 .

[181]  A. Trzebski,et al.  Local cerebral blood flow responses in rats to hypercapnia and hypoxia in the rostral ventrolateral medulla and in the cortex. , 1992, Journal of the autonomic nervous system.

[182]  S. Iscoe Control of abdominal muscles , 1998, Progress in Neurobiology.

[183]  J. Bockaert,et al.  A Single Mutation in the 5-HT4 Receptor (5-HT4-R D100(3.32)A) Generates a Gs-coupled Receptor Activated Exclusively by Synthetic Ligands (RASSL)* , 2003, The Journal of Biological Chemistry.

[184]  E. Nattie,et al.  CO2, brainstem chemoreceptors and breathing , 1999, Progress in Neurobiology.

[185]  R. Stornetta,et al.  Galanin is a selective marker of the retrotrapezoid nucleus in rats , 2009, The Journal of comparative neurology.

[186]  D. Bayliss,et al.  Central respiratory chemoreception , 2010, The Journal of comparative neurology.

[187]  G. Fortin,et al.  PHOX2B in respiratory control: Lessons from congenital central hypoventilation syndrome and its mouse models , 2009, Respiratory Physiology & Neurobiology.

[188]  D. L. Larson,et al.  Conformational analysis and automated receptor docking of selective arylacetamide-based kappa-opioid agonists. , 1998, Journal of medicinal chemistry.

[189]  J. Mortola,et al.  Effect of CO2 on the metabolic and ventilatory responses to ambient temperature in conscious adult and newborn rats. , 1996, The Journal of physiology.

[190]  P. Nolan,et al.  Selected Contribution: Effects of sleep-wake state on the genioglossus vs. diaphragm muscle responses to CO2 in rats , 2002 .

[191]  G. Richerson,et al.  Homing in on the specific phenotype(s) of central respiratory chemoreceptors. , 2005, Experimental physiology.

[192]  P. Pierson,et al.  Task2 potassium channels set central respiratory CO2 and O2 sensitivity , 2010, Proceedings of the National Academy of Sciences.

[193]  C A Smith,et al.  Contributions of central and peripheral chemoreceptors to the ventilatory response to CO2/H+. , 2010, Journal of applied physiology.

[194]  F. Obál,et al.  Brain and core temperatures and peripheral vasomotion during sleep and wakefulness at various ambient temperatures in the rat , 1990, Pflügers Archiv.

[195]  E. Nattie,et al.  Multiple sites for central chemoreception: their roles in response sensitivity and in sleep and wakefulness. , 2000, Respiration physiology.

[196]  E. Nattie,et al.  Effects of unilateral lesions of retrotrapezoid nucleus on breathing in awake rats. , 1997, Journal of applied physiology.

[197]  E. Nattie,et al.  Retrotrapezoid nucleus lesions decrease phrenic activity and CO2 sensitivity in rats. , 1994, Respiration physiology.

[198]  E. Nattie,et al.  Substance P‐saporin lesion of neurons with NK1 receptors in one chemoreceptor site in rats decreases ventilation and chemosensitivity , 2002, The Journal of physiology.

[199]  J. Viemari,et al.  Phox2a Gene, A6 Neurons, and Noradrenaline Are Essential for Development of Normal Respiratory Rhythm in Mice , 2004, The Journal of Neuroscience.

[200]  E. Nattie,et al.  State-dependent central chemoreception: A role of orexin , 2010, Respiratory Physiology & Neurobiology.

[201]  P. Guyenet,et al.  Afferent and efferent connections of the rat retrotrapezoid nucleus , 2006, The Journal of comparative neurology.

[202]  Bong Jin Kang,et al.  Expression of Phox2b by Brainstem Neurons Involved in Chemosensory Integration in the Adult Rat , 2006, The Journal of Neuroscience.

[203]  C. Strader,et al.  Allele-specific activation of genetically engineered receptors. , 1991, The Journal of biological chemistry.

[204]  P. Guyenet,et al.  The 2008 Carl Ludwig Lecture: retrotrapezoid nucleus, CO2 homeostasis, and breathing automaticity. , 2008, Journal of applied physiology.

[205]  R. Stornetta,et al.  Phox2b-Expressing Neurons of the Parafacial Region Regulate Breathing Rate, Inspiration, and Expiration in Conscious Rats , 2011, The Journal of Neuroscience.

[206]  R. Stornetta,et al.  Selective lesion of retrotrapezoid Phox2b‐expressing neurons raises the apnoeic threshold in rats , 2008, The Journal of physiology.

[207]  E. Colombari,et al.  Phox2b‐expressing retrotrapezoid neurons and the integration of central and peripheral chemosensory control of breathing in conscious rats , 2014, Experimental physiology.

[208]  N. Ayas,et al.  Hypercapnia can induce arousal from sleep in the absence of altered respiratory mechanoreception. , 2000, American journal of respiratory and critical care medicine.

[209]  K. Vranizan,et al.  Conditional expression of a Gi-coupled receptor causes ventricular conduction delay and a lethal cardiomyopathy. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[210]  G. Richerson,et al.  Medullary serotonergic neurones and adjacent neurones that express neurokinin‐1 receptors are both involved in chemoreception in vivo , 2004, The Journal of physiology.

[211]  E. Nattie,et al.  Muscimol dialysis in the retrotrapezoid nucleus region inhibits breathing in the awake rat. , 2000, Journal of applied physiology.

[212]  B. Yamamoto,et al.  Catecholaminergic microcircuitry controlling the output of airway-related vagal preganglionic neurons. , 2003, Journal of applied physiology.

[213]  K. Jacobson,et al.  Neoceptors: reengineering GPCRs to recognize tailored ligands. , 2007, Trends in pharmacological sciences.

[214]  D. Bayliss,et al.  Respiratory control by ventral surface chemoreceptor neurons in rats , 2004, Nature Neuroscience.

[215]  E. Nattie,et al.  Focal central chemoreceptor sensitivity in the RTN studied with a CO2 diffusion pipette in vivo. , 1997, Journal of applied physiology.

[216]  E. Nattie,et al.  Antagonism of rat orexin receptors by almorexant attenuates central chemoreception in wakefulness in the active period of the diurnal cycle , 2010, The Journal of physiology.

[217]  B. Jacobs,et al.  Response of serotonergic caudal raphe neurons in relation to specific motor activities in freely moving cats , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[218]  R. Leurs,et al.  A Gq/11-coupled Mutant Histamine H1 Receptor F435A Activated Solely by Synthetic Ligands (RASSL)* , 2005, Journal of Biological Chemistry.

[219]  E. Colombari,et al.  Inhibitory input from slowly adapting lung stretch receptors to retrotrapezoid nucleus chemoreceptors , 2007, The Journal of physiology.

[220]  N. L. Chamberlin,et al.  Genioglossus premotoneurons and the negative pressure reflex in rats , 2007, The Journal of physiology.

[221]  B. Conklin,et al.  Osteoblast expression of an engineered Gs-coupled receptor dramatically increases bone mass , 2008, Proceedings of the National Academy of Sciences.

[222]  E. Nattie Julius H. Comroe, Jr., distinguished lecture: central chemoreception: then ... and now. , 2011, Journal of applied physiology.