Faster isogeny-based compressed key agreement
暂无分享,去创建一个
Paulo S. L. M. Barreto | Geovandro C. C. F. Pereira | Marcos A. Simplício | Gustavo Zanon | Javad Doliskani
[1] Joseph H. Silverman,et al. The arithmetic of elliptic curves , 1986, Graduate texts in mathematics.
[2] Daniel J. Bernstein,et al. Elligator: elliptic-curve points indistinguishable from uniform random strings , 2013, IACR Cryptol. ePrint Arch..
[3] Victor Shoup,et al. A computational introduction to number theory and algebra , 2005 .
[4] David Jao,et al. Efficient Compression of SIDH Public Keys , 2017, EUROCRYPT.
[5] Reza Azarderakhsh,et al. Key Compression for Isogeny-Based Cryptosystems , 2016, AsiaPKC '16.
[6] Edward F. Schaefer,et al. How to do a p-descent on an elliptic curve , 2003 .
[7] Paulo S. L. M. Barreto,et al. Efficient Algorithms for Pairing-Based Cryptosystems , 2002, CRYPTO.
[8] M. R. Spiegel. Mathematical handbook of formulas and tables , 1968 .
[9] Tanja Lange,et al. Analysis and optimization of elliptic-curve single-scalar multiplication , 2007, IACR Cryptol. ePrint Arch..
[10] P. L. Montgomery. Speeding the Pollard and elliptic curve methods of factorization , 1987 .
[11] Srinivasa Rao Subramanya Rao. Three Dimensional Montgomery Ladder, Differential Point Tripling on Montgomery Curves and Point Quintupling on Weierstrass' and Edwards Curves , 2016, AFRICACRYPT.
[12] David Jao,et al. Towards quantum-resistant cryptosystems from supersingular elliptic curve isogenies , 2011, J. Math. Cryptol..
[13] Dale Husemoller. Elliptic Curves (2nd ed.) , 2004 .
[14] Francisco Rodríguez-Henríquez,et al. A Faster Software Implementation of the Supersingular Isogeny Diffie-Hellman Key Exchange Protocol , 2018, IEEE Transactions on Computers.