Measurement and analysis of internal loss and injection efficiency for continuous-wave blue semipolar (202¯1¯) III-nitride laser diodes with chemically assisted ion beam etched facets

Continuous-wave blue semipolar (202¯1¯) III-nitride laser diodes were fabricated with highly vertical, smooth, and uniform mirror facets produced by chemically assisted ion beam etching. Uniform mirror facets are a requirement for accurate experimental determination of internal laser parameters, including internal loss and injection efficiency, which were determined to be 9 cm−1 and 73%, respectively, using the cavity length dependent method. The cavity length of the uncoated devices was varied from 900 μm to 1800 μm, with threshold current densities ranging from 3 kA/cm2 to 9 kA/cm2 and threshold voltages ranging from 5.5 V to 7 V. The experimentally determined internal loss was found to be in good agreement with a calculated value of 9.5 cm−1 using a 1D mode solver. The loss in each layer was calculated and in light of the analysis several modifications to the laser design are proposed.

[1]  W. Chow,et al.  Analysis of lasers as a solution to efficiency droop in solid-state lighting , 2015 .

[2]  James S. Speck,et al.  High-power blue laser diodes with indium tin oxide cladding on semipolar (202¯1¯) GaN substrates , 2015 .

[3]  Michael Kneissl,et al.  Characterization of AlGaInN diode lasers with mirrors from chemically assisted ion beam etching , 1998 .

[4]  James S. Speck,et al.  Determination of internal parameters for AlGaN-cladding-free m-plane InGaN/GaN laser diodes , 2011 .

[5]  Patrick Rinke,et al.  Determination of Internal Loss in Nitride Lasers from First Principles , 2010 .

[6]  S. Denbaars,et al.  Influence of polarity on carrier transport in semipolar (2021¯) and (202¯1) multiple-quantum-well light-emitting diodes , 2012 .

[7]  Daniel L. Becerra,et al.  Continuous-wave operation of a (20\bar{2}\bar{1}) InGaN laser diode with a photoelectrochemically etched current aperture , 2015 .

[8]  James S. Speck,et al.  Low-threshold-current-density AlGaN-cladding-free m-plane InGaN/GaN laser diodes , 2010 .

[9]  G. Gobsch,et al.  Dielectric function and bowing parameters of InGaN alloys , 2012 .

[10]  Takashi Mukai,et al.  Investigation and comparison of optical gain spectra of (Al,In)GaN laser diodes emitting in the 375nm to 470 nm spectral range , 2007, SPIE OPTO.

[11]  Shuji Nakamura,et al.  Ridge‐geometry InGaN multi‐quantum‐well‐structure laser diodes , 1996 .

[12]  S. Nakamura,et al.  InGaN-Based Multi-Quantum-Well-Structure Laser Diodes , 1996 .

[13]  T. Mukai,et al.  Optical gain spectra for near UV to aquamarine (Al,In)GaN laser diodes. , 2007, Optics express.

[14]  Shinichi Tanaka,et al.  High-power, low-efficiency-droop semipolar (202̄1̄) single-quantum-well blue light-emitting diodes , 2012 .

[15]  S. Denbaars,et al.  Blue and aquamarine stress-relaxed semipolar (112¯2) laser diodes , 2013 .

[16]  Vincenzo Savona,et al.  Linear optical properties of semiconductor microcavities with embedded quantum wells , 1999 .

[17]  S. Denbaars,et al.  Semipolar $({\hbox{20}}\bar{{\hbox{2}}}\bar{{\hbox{1}}})$ InGaN/GaN Light-Emitting Diodes for High-Efficiency Solid-State Lighting , 2013, Journal of Display Technology.

[18]  Daniel Hofstetter,et al.  Dry-etching and characterization of mirrors on III-nitride laser diodes from chemically assisted ion beam etching , 1998 .

[19]  Daniel L. Becerra,et al.  High-power low-droop violet semipolar (303¯1¯) InGaN/GaN light-emitting diodes with thick active layer design , 2014 .

[20]  James S. Speck,et al.  Lighting for the 21st century with laser diodes based on non-basal plane orientations of GaN , 2015 .

[21]  James S. Speck,et al.  Pulsed high-power AlGaN-cladding-free blue laser diodes on semipolar (202¯1¯) GaN substrates , 2013 .

[22]  Masao Ikeda,et al.  Recent progress in high-power blue-violet lasers , 2003 .

[23]  S. Denbaars,et al.  4 Gbps direct modulation of 450 nm GaN laser for high-speed visible light communication. , 2015, Optics express.

[24]  M. Khan,et al.  Characteristics of chemically assisted ion beam etching of gallium nitride , 1994 .

[25]  Patrick Vogt,et al.  Facet formation for laser diodes on nonpolar and semipolar GaN , 2010 .

[26]  H. Ryu,et al.  Determination of internal parameters in blue InGaN laser diodes by the measurement of cavity-length dependent characteristics , 2008 .

[27]  H. Casey,et al.  Optical-field calculations for lossy multiple-layer AlxGa1−xN/InxGa1−xN laser diodes , 1998 .

[28]  Jeffrey Y. Tsao,et al.  Comparison between blue lasers and light‐emitting diodes for future solid‐state lighting , 2013 .

[29]  S. Denbaars,et al.  Refractive index study of AlxGa1−xN films grown on sapphire substrates , 2003 .

[30]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits: Coldren/Diode Lasers 2E , 2012 .

[31]  Mathew C. Schmidt,et al.  Gain comparison in polar and nonpolarsemipolar gallium-nitride-based laser diodes , 2012 .

[32]  Hyun-Surk Kim,et al.  Highly stable temperature characteristics of InGaN blue laser diodes , 2006 .

[33]  W. Scheibenzuber,et al.  Calculation of optical eigenmodes and gain in semipolar and nonpolar InGaN/GaN laser diodes , 2009 .